期刊文献+

上部同单调随机变量和的度量

Measure on the Sum of Upper Comonotonic Random Variables
下载PDF
导出
摘要 应用分布函数的反函数法和上部同单调随机向量的性质,计算不同Young函数下Pareto分布与指数分布随机变量和的Haezendonck-Goovaerts风险度量,得到了保单组合风险的上部同单调临界点及理赔总量的停止损失保费和Haezendonck-Goovaerts度量的表达式,并运用R软件对Haezendonck-Goovaerts度量进行了数值模拟. We computed the Haezendonck-Goovaerts risk measure of the sum of random variables with Pareto and exponential marginal distributions on different Young functions, using the inverse function of the distribution function and the properties of upper comonotonic random vector. The upper comonotonic thresholds of the portfolio risks were given. We established a transparent expression for the stop-loss premium and Haezendonck-Goovaerts risk measure of the total claim. We also analyzed the properties of the natural estimators of Haezendonck-Goovaerts risk measures by means of numerical simulations with the help of R.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2012年第6期1057-1063,共7页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:10971081 11071126 J1030101)
关键词 上部同单调 停止损失保费 Haezendonck-Goovaerts风险度量 尾部凸序 PARETO分布 upper comonotonicity stop-loss premium Haezendonck-Goovaerts risk measure tail convex order Pareto distribution
  • 相关文献

参考文献17

  • 1Goovaerts M J, Kaas R, Dhaene J, et al. A Unified Approach to Generate Risk Measures [J]. Astin Bulletin, 2003, 33(2): 173-191.
  • 2Dhaene J, Vanduffel S, Goovaerts M J, et al. Risk Measures and Comonotonicity: A Review [J]. Stochastic Models, 2006, 22: 573-606.
  • 3CHEUNG Ka-chun. Characterization of Comonotonicity Using Convex Order [J]. Insurance: Mathematics and Economics, 2008, 43(3) : 403-406.
  • 4CHEUNG Ka-chun. Upper Cornonotonicity [J]. Insurance: Mathematics and Economics, 2009, 45(1) : 35-40.
  • 5CHEUNG Ka-chun, Vanduffel S. Bounds for Sums of Random Variables When the Marginal Distributions and the Variance of the Sum Are Given [J/OL]. 2011-01-16. http://www, tandfonline, com/doi/abs/10. 1080/03461238. 2011. 558186 #/review.
  • 6DONG Jing, CHEUNG Ka-chun, YANG Hai-liang. Upper Comonotonicity and Convex Upper Bounds for Sums of Random Variables [J]. Insurance: Mathematics and Economics, 2010, 47(2): 159-166.
  • 7Nam H S, TANG Qi-he, YANG Fan. Characterization of Upper Comonotonicity via Tail Convex Order [J]. Insurance: Mathematics and Economics, 2011, 48(3): 368-373.
  • 8Haezendonck J, Goovaerts M. A New Premium Calculation Principle Based on Orlicz Norms [J]. Insurance: Mathematics and Economics, 1982, 1(1): 41-53.
  • 9Goovaerts M J, Kaas R, Dhaene J, et al. Some New Classes of Consistent Risk Measures [J]. Insurance: Mathematics and Economics, 2004, 34(3) : 505-516.
  • 10Ahn J Y. Nonparametrie Estimation of Haezendonek Risk Measure [R]. Iowa, Italy: University of Iowa, 2012.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部