期刊文献+

n阶微分方程边值问题解的存在性和唯一性

Existence and Uniqueness of the Solutions of nth-Order Differential Equations Boundary Value Problems
下载PDF
导出
摘要 运用上下解方法和单调迭代法研究一类含有积分边界条件的n阶微分方程边值问题解的存在性和唯一性,得到了解的存在性和唯一性的充分条件,给出了求近似解的单调迭代格式,并在满足解的存在、唯一性条件下给出了求解迭代序列的误差估计式. Using upper and lower solution method and the monotone iterative method, we studied the existence and uniqueness of the solutions of nth-order differential equations boundary value problems with integral boundary conditions. We obtained the sufficient conditions of the existence and uniqueness of solutions, and gave the iterative sequence for solving the solutions and its error estimation formula under satisfying the conditions of uniqueness of solutions.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2012年第6期1103-1108,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11171220) 上海市教委科研创新基金重点项目(批准号:10ZZ93)
关键词 上下解方法 单调迭代法 边值问题 积分边界条件 upper and lower solutions method monotone iterative method boundary value problems integral boundary conditions
  • 相关文献

参考文献8

  • 1LI Fang-fei, SUN Ji-tao, JIA Mei. Monotone Iterative Method for the Second-Order Three-Point Boundary Value Problem with Upper and Lower Solutions in the Reversed Order [J]. Appl Math Comp, 2011, 217(9): 4840-4847.
  • 2LI Fang-fei, JIA Mei, LIU Xi-ping, et al. Existence and Uniqueness of Solutions of Second-Order Three-Point Boundary Value Problems with Upper and Lower Solutions in the Reversed Order [J]. Nonlinear Anal: Theory, Methods ~ Applications, 2008, 68: 2381-2388.
  • 3敖婧,张然,张凯.一类二阶四点边值问题解的存在性[J].吉林大学学报(理学版),2008,46(2):173-178. 被引量:1
  • 4Cabada A, Grossinho M R, Minh6s F M. Extremal Solutions for Third-Order Nonlinear Problems with Upper and Lower Solutions in Reversed Order [J]. Nonlinear Anal: Theory, Methods & Applications, 2005, 62(6): 1109-1121.
  • 5Cabada A, Pouso R L, Minhos F M. Extremal Solutions to Fourth-Order Functional Boundary Value Problems Including Muhipoint Conditions ~J]. Nonlinear Anal Real World Appl, 2009, 10(4):2157-2170.
  • 6纪慧鹏,贾梅,席守亮.三阶三点边值问题解的存在性与唯一性[J].上海理工大学学报,2009,31(6):511-516. 被引量:1
  • 7刘颖.n阶非线性微分方程的三点及四点边值问题[J].吉林大学学报(理学版),2002,40(1):10-15. 被引量:2
  • 8郭大钧,孙经先,刘兆理.非线性常微分方程泛函方法[M].2版.济南:山东科学技术出版社,2006.

二级参考文献23

  • 1王慧敏,张然,金光日,毓石.一类p-Laplace方程多点边值问题的数值计算[J].吉林大学学报(理学版),2007,45(3):358-364. 被引量:2
  • 2赵为礼.三阶非线性微分方程边值问题解的存在性[J].吉林大学自然科学学报,1984,(2):10-19.
  • 3郭大钧,孙经先,刘兆理.非线性常微分方程泛函方法[M].第2版.济南:山东科学技术出版社,2006.
  • 4LI Fang-fei,JIA Mei,LIU Xi-ping,et al. Existence and uniqueness of solutions of second-order three-point boundary value problems with upper and lower solutions in the reversed order[J]. Nonlinear Analysis, 2008,68:2 381 - 2 388.
  • 5JIA Mei, LIU Xi-ping. The method of upper and lower solutions for second-order non-homogeneous two-point boundary value problem[J]. Electron J Differential Equations, 2007,116 : 1 - 10.
  • 6CABADA A, HABETS P, LOIS S. Monotone method for the Neumann problem with lower and upper solutions in the reverse order[J]. Appl Mat Comput,2001,171: 1 - 14.
  • 7CABADA A, ESPINAR V O. Existence and comparison results for difference p-Laplacian boundary value problems with lower and upper solutions in reverse order[J].J Math Anal Appl,2002,267:501- 521.
  • 8CABADA A, GROSSINHO M R, MINHOS F. Extremal solutions for third-order nonlinear problems with upper and lower solutions in reversed order[]]. Nonlinear Anal,2005,62:1 109 - 1 121.
  • 9MEYER G H. Initial value methods for boundary value problems[J]. Theory and Applications of Invariant Imbedding, 1977,7(9) :679 - 679.
  • 10AGARWAL R P. Boundary value problems for higher order differential equation[M]. Singapore: World Scientific, 1986.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部