摘要
在赋范线性空间中利用广义高阶锥方向邻接导数研究集值优化问题的超有效解.在近似锥-次类凸假设下,借助凸集分离定理和Henig扩张锥的性质,得到了集值优化问题取得超有效元的Fritz John型必要条件.
In normed linear spaces, the super efficient solutions of set-valued optimization were investigated with generalized higher-order cone-directed adjacent derivatives. Under the assumption of near cone-subconvexlikeness, with the help of separate theorem for convex sets and the properties of Henig dilating cone, the type of Fritz John necessary optimality condition was established for set-valued optimization problem to obtain its super efficient elements.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2012年第6期1146-1150,共5页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:10461007)
江西省自然科学基金(批准号:2009GZS0021)
江西省教育厅科技项目(批准号:GJJ12010)
关键词
超有效解
广义m阶C-方向邻接导数
集值优化
super efficient solution
cone-directed mth-order generalized adjacent derivative
set-valued optimization