摘要
利用粒子群算法快速的局部收敛性和人工鱼群的全局收敛性,提出了基于粒子群的人工鱼群混合优化算法,并用于求解常规导弹打击集群目标瞄准点选择优化问题。仿真结果表明:此算法在求解常规导弹打击集群目标瞄准点选择问题时,可以较少的迭代次数取得比较满意的瞄准点。
Based on the quickly local convergent performance of particle swarm optimization (PSO) and the global convergent performance of artificial fish swarm algorithm (AFSA) ,a hybrid particle swarm optimization algorithm is proposed. The PSO-ASFA is used to solve aim-points optimization by conventional missile to attack representative congregative targets. The simulation shows,being compared by the conventional PSO, the PSO-AFSA algorithm is more likely to get a good optimization results by less iterative times.
出处
《火力与指挥控制》
CSCD
北大核心
2012年第11期116-119,共4页
Fire Control & Command Control
关键词
集群目标
人工鱼群算法
粒子群算法
瞄准点优化
congregative targets, particle swarm optimization, artiticial iish swarm algorithm, aim-points optimization