期刊文献+

超甜玉米bt2基因SNP位点的分析及分子标记辅助筛选 被引量:11

Protomer region of super sweet corn bt2 gene and development of molecular marker-assisted selection
下载PDF
导出
摘要 【目的】利用等位基因特异PCR技术对超甜玉米的基因型进行分子鉴定,建立根据单核苷酸多态性(SNP)进行分子标记辅助筛选的平台。【方法】根据超甜玉米基因bt2启动子区域序列设计引物,通过等位基因特异PCR扩增,对PCR产物进行测序,利用ClustalX软件,分析比较了32份超甜玉米自交系bt2基因启动子区域的核苷酸序列,并进行了分子鉴定。【结果】在扩增的888bp序列中有3个SNP位点,分别在bt2基因转录起始上游的-20,-103和-107bp处,通过对32份超甜玉米自交系的SNP位点分析,将其区分为AAA和GGG 2种单体型。【结论】利用3个SNP位点中的-103(A/G)位点进行等位基因特异PCR,成功地鉴定了超甜玉米自交系的基因型,建立了通过等位基因特异PCR辅助筛选bt2基因的平台。 【Objective】 This study aimed to identify the genotype of super sweet corn inbred lines through allele specific PCR and establish the platform of molecular marker-assisted selection by single-nucleotide polymorphism(SNP).【Method】 PCR primer was designed based on bt2 gene promoter region in super sweet corn.After being amplified,PCR primers from 32 super sweet corns were sequenced,analyzed and compared by software ClustalX.【Result】 Three SNPs were detected in an amplified 888 bp nucleotide sequence.They were at-20 bp,-103 bp and-107 bp sites upstream of transcription starting site of bt2 gene,respectively.The inbred lines of these 32 sweet corns were divided into two haplotypes(GGG and AAA).【Conclusion】 Using one(-103 bp) of the three SNPs(A/G) loci,we successfully identified the genotype of super sweet corn inbred lines,and established the platform for selecting bt2 gene through allele specific PCR.
出处 《西北农林科技大学学报(自然科学版)》 CSCD 北大核心 2012年第11期73-78,共6页 Journal of Northwest A&F University(Natural Science Edition)
基金 广东省科技计划项目(2010B020302010)
关键词 超甜玉米 单核苷酸多态性(SNP) 等位基因特异PCR super sweet corn single nucleotide polymorphism(SNP) allele specific PCR
  • 相关文献

参考文献28

  • 1MuForster C. Physical associated of starch biosynthetic enzymes with starch granules of maize endospermm. Granule associated forms of starch synthase Ⅰ and starch branching enzyme Ⅱ [J]. Plant Physiol, 1996,111 : 821-829.
  • 2Okita T W. Is there an alternative pathway for starch synthesis [J]. Plant Physiol, 1992,100 : 560-564.
  • 3Smith A M, Denyer K, Martin C. The synthesis of the starch granule [J]. Annu Rev Plant Physiol Plant Mol Biol, 1997,48: 67-87.
  • 4Monille G, Maddelein M I., Libessart N, et al. Preamylopectin processing= A mandatory step for starch biosynthesis in plants [J]. Plant Ce11,1996,8:1353- 1366.
  • 5Greene T W,Hannah L C. Enhanced stability of maize endo- sperm ADP-glucose pyrophosphorylase is gained through mu- tants that alter subunit interactions [J]. Proc Natl Acad Sci USA,1998,95:13342-13347.
  • 6Morell M K, Bloom M, Knowles V, et al. Subunit structure of spinach leaf ADP glucose pyrophosphorylase[J]. Plant Physi- 01,1987,85:182-187.
  • 7Muller-Rober B, Sonnewald U, Willmitzer L. Inhibition of the ADP-glueose pyrophosphorylase in transgenlc potatoes leads to sugar-storing tubers and influences tuber formation and ex pression of tuber storage protein genes [J]. EMBO J, 1992, 11 : 1229-1238.
  • 8Sanwall G G, Greenberg E, Hardie J, et al. Reguiation of starch biosynthesis in plant leaves= Activation and inhibition o{ ADP- glucose pyropho sphorylase [J]. Plant Physiol, 1968,43: 417- 427.
  • 9Dickinson David B, Preiss Jack. Presence of ADP glucose pyro phosphorylase in shrunken 2 and brittle-2 mutants of maize endosperm [J]. Plant Physiol, 1969,44: 1058-1062.
  • 10Tsai C Y, Nelson O E. Starch-deficient maize mutant lacking adenosine dephosphate glucose pyrophosphorylase activity [J]. Science, 1966,151 (708) : 341-343.

二级参考文献16

  • 1Franceschi S,Bidoli E M,La Vecchia C,et al.Tomatoes and risk of digestivetract cancers[J].Int J Cancer,1994,59:181-184.
  • 2Giovannucci E,Ascherio A,Rimm E B,et al.Intake of carotenoids and retinol in relationship to risk of prostate cancer[J].J Natl Cancer Inst,1995,87:1767-1776.
  • 3Jarvinen R,Knekt P,Seppanen R,et al.Diet and breast cancer risk in a cohort of Finnish women[J].Cancer Lett,1997,114:251-253.
  • 4Cohen J H,Kristal A R,Stanford J L.Fruit and vegetable intakes and prostate cancer risk[J].J Natl Cancer Inst,2000,92(1):61-68.
  • 5Liu Y S,Gur A,Ronen G,et al.There is more to tomato fruit colour than candidate carotenoid genes[J].Plant Biotechnol J,2003,1:195-207.
  • 6Alba R,Cordonnier-Pratt M M,Pratt L H.Fruit-localized phytochromes regulate lycopene accumulation independently of ethylene production tomato[J].Plant Physiol,2000,123:363-370.
  • 7Giovannoni J.Genetic regulation of fruit development and ripening[J].Plant Cell,2004,16:170-180.
  • 8Srinivas A,BeheraR K,Agawa T K,et al.High pigment1 mutation negatively regulates phototropic signal transduction in tomato seedlings[J].Plant Physiology,2004,134:790 -800.
  • 9Bramley P M.Regulation of carotenoid formation during tomato fruit ripening and development[J].J Experimental Botany,2002,53:2107-2113.
  • 10YenH C,Shelton B A,Howard LR,et al.The tomato high-Pigment (hp) locus maps to chromosome 2 and influences plastome copy number and fruit quality[J].Theor Appl Genet,1997,95:1069-1079.

共引文献4

同被引文献169

引证文献11

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部