期刊文献+

Improved Adaptive Random Convolutional Network Coding Algorithm 被引量:2

Improved Adaptive Random Convolutional Network Coding Algorithm
下载PDF
导出
摘要 To address the issue of field size in random network coding, we propose an Improved Adaptive Random Convolutional Network Coding (IARCNC) algorithm to considerably reduce the amount of occupied memory. The operation of IARCNC is similar to that of Adaptive Random Convolutional Network Coding (ARCNC), with the coefficients of local encoding kernels chosen uniformly at random over a small finite field. The difference is that the length of the local encoding kernels at the nodes used by IARCNC is constrained by the depth; meanwhile, increases until all the related sink nodes can be decoded. This restriction can make the code length distribution more reasonable. Therefore, IARCNC retains the advantages of ARCNC, such as a small decoding delay and partial adaptation to an unknown topology without an early estimation of the field size. In addition, it has its own advantage, that is, a higher reduction in memory use. The simulation and the example show the effectiveness of the proposed algorithm. To address the issue of field size in random network coding, we propose an Improved Adaptive Random Convolutional Network Coding (IARCNC) algorithm to considerably reduce the amount of occupied memory. The operation of IARCNC is similar to that of Adaptive Random Convolutional Network Coding (ARCNC), with the coefficients of local encoding kernels chosen uniformly at random over a small finite field. The difference is that the length of the local encoding kernels at the nodes used by IARCNC is constrained by the depth; meanwhile, increases until all the related sink nodes can be decoded. This restriction can make the code length distribution more reasonable. Therefore, IARCNC retains the advantages of ARCNC, such as a small decoding delay and partial adaptation to an unknown topology without an early estimation of the field size. In addition, it has its own advantage, that is, a higher reduction in memory use. The simulation and the example show the effectiveness of the proposed algorithm.
出处 《China Communications》 SCIE CSCD 2012年第11期63-69,共7页 中国通信(英文版)
基金 supported by the National Science Foundation (NSF) under Grants No.60832001,No.61271174 the National State Key Lab oratory of Integrated Service Network (ISN) under Grant No.ISN01080202
关键词 convolutional network coding adaptive network coding algorithm random coding 编码算法 随机选择 网络编码 自适应 卷积 内存使用 有限域 字段
  • 相关文献

参考文献15

  • 1ALSHWEDE R, CAl N, U S, et ai. Network Information Flow[J]. IEEE Transactions on Inforrration Theory, 2000, 46 (4): 1204-1216.
  • 2U S, YEUNG R, CAl N. Linear Network Coding [J]. IEEE Transactions on Infomntion Theory, 2003, 49(2): 371-381.
  • 3KOTTER R, MEDEARD M. An Algebraic Approach to Net?work Coding [J]. IEEE'ACM Transactions on Networking, 2003, 11(5): 782-795.
  • 4HO T, MEDARD M, KOETTER R, et al. A Random Linear Network Coding Approach to Multicast [J]. IEEE Transac?tions on Inforrration Theol)',2006, 52(10): 4413-4430.
  • 5YEUNG R, U S, CAl N, et al. Network Coding Theory [M]. Foundation and Trends in Communications and Information Technology, Now Publishers Inc, USA, 2006.
  • 6U S, YEUNG R On Convolutional Network Coding[C]// Pro?ceedings of2006 IEEE International Symposium on Inforrra?tion Theory: July 9-14,2006, Seattle, USA. IEEE Press, 2006: 1743-1747.
  • 7U S, SUN Q. Network Coding Theory via Commutative AI?gebra[J]. IEEE Transactions on Inforrration Theory, 2011, 57 (I): 403-415.
  • 8U S, SUN Q, SHAO Z. Linear Network Coding: Theory and Algorithrrs],l]. Proceedings of IEEE, 2011, 99(3): 372-387.
  • 9EREZ E, FEDER M. Efficient Network Codes for Cyclic Net?works [J]. IEEE Transactions on Inforrration Theory, 2010, 56 (8): 3862-3878.
  • 10HUANG Jiaqing, WANG Liang, CHENG Wenqing, et ai. Polynomial Titre Construction Algorithm ofBCNC for Net?work Coding in Cyclic Network[C]// Proceedings of the 8th IEEE' ACIS International Conference on Computer and Inforrration Science: June 1-3,2009, Shanghai, China. IEEE Press, 2009: 228-233.

同被引文献45

  • 1覃团发,罗建中,唐振华,刘家锋.An Energy-Efficient Network Coded Cooperation Scheme in Wireless Sensor Networks[J].China Communications,2011,8(2):166-172. 被引量:4
  • 2陈晶,李彤,杜瑞颖,傅建明,刘建伟.Efficient Reliable Opportunistic Network Coding Based on Hybrid Flow in Wireless Network[J].China Communications,2011,8(4):125-131. 被引量:5
  • 3王路,刘立祥,胡晓惠.Transmission Technique towards Seamless Handover for NGEO Satellite Networks[J].China Communications,2011,8(5):88-95. 被引量:1
  • 4AHLSWEDE R, CAl Ning, LI S Y R, et al. Network Information Flow[J]. IEEE Transactions on Information Theory, 2000, 46(4): 1204-1216.
  • 5LI S-Y R, YEUNG R W, CAl Ning. Linear Network Coding[J]. IEEE Transactions on Information Theory, 2003, 49(2): 371-381.
  • 6HO T, MEDARD M, KOETTER R, et al. A Random Linear Network Coding Approach to Multicast[J]. IEEE Transactions on Information Theory, 2006, 52(10): 4413-4430.
  • 7FRAGOULI C, SOLJANIN E. Network Coding Applications[J]. Foundations and Trends in Networking, 2007, 2(2): 135-269.
  • 8HO T, LEONG B, KOETTER R, et al. Byzantine Modification Detection in Multicast Networks Using Randomized Network Coding[J]. IEEE Transactions on Information Theory, 2008, 54(6): 2798-2803.
  • 9JAGGI S, LANGBERG M, KATTl S, et al. Resilient Network Coding in the Presence of Byzantine Adversaries[J]. IEEE Transactions on Information Theory, 2008, 54(6): 2596-2603.
  • 10KROHN M N, FREEDMAN M J, MAZIERES D. On-the-Fly Verification of Rateless Erasure Codes for Efficient Content Distribution[C]// IEEE Symposium on Security and Privacy: May 9-12, 2004. Berkeley, CA, USA IEEE Press, 2004: 226-240.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部