期刊文献+

脉冲等离子弧快速成形Inconel 625组织性能研究 被引量:14

Microstructure and Mechanical Properties of Inconel 625 Components Deposited by Pulsed Plasma Arc Rapid Prototyping
下载PDF
导出
摘要 研究了脉冲等离子弧快速成形Inconel 625镍基高温合金零件的组织特征及力学性能,重点分析了沉积态组织中相析出规律及分布特点。结果表明,沉积态的组织以胞状树枝晶为主,具有较强生长取向性的外延枝晶组织特征,层与层结合处呈现更细小胞状枝晶特征。由于较快的冷却速率,在整个成形零件包括层与层的结合处并未出现严重的显微偏析现象。通过多种分析手段证实了大量不规则形状的弥散Laves相颗粒分布在枝晶间,MC碳化物(包括NbC,TiC)分布在枝晶间及晶界,以及少量针状相δ(Ni3Nb)的析出。力学性能测试结果表明,显微硬度在整个沉积零件分布较为均匀,在260~285HV0.2范围内,在零件的底部及层层的结合处由于更细小的组织而呈现更高的硬度值。由于析出相的弥散强化作用,零件的抗拉强度最高达到750MPa,同时伸长率可达到50%。 The microstructure and mechanical properties of Inconel 625 component deposited by pulsed plasma arc rapid prototyping were investigated.The precipitation principle and distribution characteristics of phases in deposits were analyzed.The results indicated that the as-deposited samples exhibited homogenous cellular dendrite structure in nature,which grew epitaxially along the deposition direction.The microstructure of the interface regions between deposited layers exhibited refined structure.The composition distribution in the whole sample was pretty uniform and no significant segregation occurred.Some intermetallic phases such as Laves phase,some minor MC(NbC,TiC) and needle-like δ(Ni3Nb) were observed in γ-Ni matrix.Disperse MC particles precipitates in interdendritic and grain boundary.Micro-hardness measured at various location(including transverse plane and longitudinal plane) revealed hardness in the range of 260-285HV0.2.Due to highly refined structure,micro-hardness at the interface region is slightly higher than the other regions.Ultimate tensile strength of Inconel 625 sample deposited as short raster pattern was found to be 750MPa,and the percentage elongation was found to be 50%.
出处 《材料工程》 EI CAS CSCD 北大核心 2012年第11期6-11,共6页 Journal of Materials Engineering
基金 国家973项目(2011CB013403) 国家科技支撑项目(2011BAF11B07 2011BAC10B05)
关键词 脉冲等离子弧快速成形 INCONEL 625 组织特征 力学性能 pulsed plasma arc rapid prototyping Inconel 625 microstructure mechanical property
  • 相关文献

参考文献15

  • 1EVANS N D, MAZIASZ P J, SHINGLEDECKER J P, et al. Mierostructure evolution of alloy 625 foil and sheet during creep at 750℃ [J]. Materials Science and Engineering A, 2008, 498 (1-2) : 412-420.
  • 2RODR1GUEZ R, HAYES R W, BERBON P B, et al. Tensile and creep behavior of cryomilled lnco 625[J]. Acta Materialia, 2003, 51(4): 911--929.
  • 3MATHEW M D, RAO K B S, MANNAN S L. Creep properties of service-exposed Alloy 625 after re solution annealing treatment [J]. Materials Science and Engineering A, 2004, 372 (1 -- 2) : 327--333.
  • 4THERIAULT A, XUE L, DRYDEN J R. Fatigue behavior of la ser consolidated IN-625 at room and elevated temperatures [J]. Materials Science and Engineering A, 2009, 516 ( 1 -- 2) : 217 -- 225.
  • 5SHANKAR V, RAO K B S, MANNAN S L. Microstructure and mechanical properties of Inconel 625 superalloy[J]. Journal of Nuclear Materials, 2001, 288(2 3): 222-232.
  • 6GANESH P, KAUL R, PAUL C P, et al. Fatigue and fracture toughness characteristics of laser rapid manufactured Inconel 625 structures[J]. Materials Science and Engineering A, 2010, 527(29--30): 7490--7497.
  • 7RAI S K, KUMAR A, SHANKAR V, et al. Characterization of microstructures in Inconel 625 using X-ray diffraction peak broad- ening and lattice parameter measurements[J]. Scripta Materialia, 2004, 51(1): 59--63.
  • 8SONG K H, NAKATA K. Effect of precipitation on post-heat- treated Inconel 625 alloy after friction stir welding [J]. Materials and Design, 2010, 31(6): 2942--2947.
  • 9ZHAO X M, CHEN J, LIN X, et al. Study on microstructure and mechanical properties of laser rapid forming Inconel 718[J]. Materials Science and Engineering A, 2008, 478 ( 1 -- 2) : 119 -- 124.
  • 10ZHANG H Y, ZHANG S H, CHENG M, et al. Deformation characteristics of δ phase in the delta-processed Inconel 718 alloy [J]. Materials Characterization, 2010, 61(1): 49-53.

二级参考文献18

  • 1杨海欧,林鑫,陈静,杨健,黄卫东.利用激光快速成形技术制造高温合金不锈钢梯度材料[J].中国激光,2005,32(4):567-570. 被引量:20
  • 2J. M. Oblak, K. F. Paulonis, D. S. Duvall. Coherency strengthening in Ni base alloys hardened by DO22 γ" precipitates [J]. Metallurgical Transactions A, 1974, 5(1) : 143- 153.
  • 3M. W. Mahoney. Superplatic properties of alloy 718 [C]. Superalloy 718 Metallurgy and Applications, 1989. 391-405.
  • 4Minlin Zhong, Hongqing Sun, Wenjin Liu et al.. Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy [J]. Scripta Materialia, 2005, (53):159-164.
  • 5J. Mazumder, D. Dutta, N. Kikuchi et al.. Closed loop direct metal deposition: art to part [J]. Optics and Lasers in Engineering, 2000, 34(4-6) :397-414.
  • 6P. L. Blackwell. The mechanical and microstrutural characteristics of laser deposited IN718 [ J ]. J. Materials Processing Technol. , 2005, 170:240-246.
  • 7Xiaoming Zhao, Jing Chen, Xin Lin et al.. Study on microstructure and mechanical properties of laser rapid forming Inconel 718 [J]. Materials Science and Engineering A, 2008, 478:119-124.
  • 8M. J. Cieslak, G. A. Knorovsky, T. J. Headley et al.. Solidification metallurgy of alloy 718 and other Nb-containing superalloys [C]. Superalloy 718-Metallurgy and Applications, 1989. 59.
  • 9J. N. DuPont, C. V. Robino, A. R. Marder et al.. Solidification and weldability of Nb bearing superalloys [J]. Welding, 1998, 77:417s.
  • 10J. F. Radavich. The physical metallurgy of cast and wrought alloy718 [C]. Superalloy 718-Metallurgy and Applications, 1989. 229.

共引文献48

同被引文献201

引证文献14

二级引证文献129

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部