期刊文献+

Activated Expression of WRKY57 Confers Drought Tolerance in Arabidopsis 被引量:67

Activated Expression of WRKY57 Confers Drought Tolerance in Arabidopsis
原文传递
导出
摘要 Drought is one of the most serious environmental factors that limit the productivity of agricultural crops worldwide. However, the mechanism underlying drought tolerance in plants is unclear. WRKY transcription factors are known to function in adaptation to abiotic stresses. By screening a pool of WRKY-associated T-DNA insertion mutants, we isolated a gain-of-function mutant, acquired drought tolerance (adt), showing improved drought tolerance. Under drought stress conditions, adt accumulated higher levels of ABA than wild-type plants. Stomatal aperture analysis indi- cated that adt was more sensitive to ABA than wild-type plants. Molecular genetic analysis revealed that a T-DNA inser- tion in adt led to activated expression of a WRKY gene that encodes the WRKR57 protein. Constitutive expression of WRKY57 also conferred similar drought tolerance. Consistently with the high ABA content and enhanced drought tol- erance, three stress-responsive genes (RD29A, NCED3, and ABA3) were up-regulated in adt. ChIP assays demonstrated that WRKY57 can directly bind the W-box of RD29A and NCED3 promoter sequences. In addition, during ABA treatment, seed germination and early seedling growth of adt were inhibited, whereas, under high osmotic conditions, adt showed a higher seed germination frequency. In summary, our results suggested that the activated expression of WRKY57 improved drought tolerance of Arabidopsis by elevation of ABA levels. Establishment of the functions of WRKY57 will enable improvement of plant drought tolerance through gene manipulation approaches. Drought is one of the most serious environmental factors that limit the productivity of agricultural crops worldwide. However, the mechanism underlying drought tolerance in plants is unclear. WRKY transcription factors are known to function in adaptation to abiotic stresses. By screening a pool of WRKY-associated T-DNA insertion mutants, we isolated a gain-of-function mutant, acquired drought tolerance (adt), showing improved drought tolerance. Under drought stress conditions, adt accumulated higher levels of ABA than wild-type plants. Stomatal aperture analysis indi- cated that adt was more sensitive to ABA than wild-type plants. Molecular genetic analysis revealed that a T-DNA inser- tion in adt led to activated expression of a WRKY gene that encodes the WRKR57 protein. Constitutive expression of WRKY57 also conferred similar drought tolerance. Consistently with the high ABA content and enhanced drought tol- erance, three stress-responsive genes (RD29A, NCED3, and ABA3) were up-regulated in adt. ChIP assays demonstrated that WRKY57 can directly bind the W-box of RD29A and NCED3 promoter sequences. In addition, during ABA treatment, seed germination and early seedling growth of adt were inhibited, whereas, under high osmotic conditions, adt showed a higher seed germination frequency. In summary, our results suggested that the activated expression of WRKY57 improved drought tolerance of Arabidopsis by elevation of ABA levels. Establishment of the functions of WRKY57 will enable improvement of plant drought tolerance through gene manipulation approaches.
出处 《Molecular Plant》 SCIE CAS CSCD 2012年第6期1375-1388,共14页 分子植物(英文版)
基金 This research was supported by the Science Foundation of the Ministry of Agriculture of the Peoples' Republic of China,the Science Foundation of the Chinese Academy of Sciences,the National Natural Science Foundation of China
关键词 abiotic stress drought tolerance abscisic acid (ABA) WRKY transcription factor acquired drought tolerance (adt). abiotic stress drought tolerance abscisic acid (ABA) WRKY transcription factor acquired drought tolerance (adt).
  • 相关文献

参考文献3

二级参考文献13

共引文献105

同被引文献357

引证文献67

二级引证文献457

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部