期刊文献+

有限或无限区间连续生成元的一维反射倒向随机微分方程

One-dimensional reflected backward stochastic differential equations with finite or infinite time horizons and continuous generators
下载PDF
导出
摘要 得到了一类带单边连续下障碍的反射倒向随机微分方程(RBSDE)极小解的存在定理和比较定理,其生成元g满足广义线性增长条件且关于(y,z)连续,时间区间可以是有限或无限的.推广了倒向随机微分方程理论(BSDE)和RBSDE在一维情况下的相应结果. The existence theorem and comparison theorem of solution for the reflected backward stochastic differenti- al equations(RBSDE) are devoted,where the time horizon may be finite or infinite, and the hypotheses on g are not necessary to be uniform in t. If the generators are continuous and of linear-growth in (y,z), both the existence theo- rem and comparison theorem of minimum solutions to the RBSDE will hold true.
出处 《江苏师范大学学报(自然科学版)》 CAS 2012年第3期18-23,共6页 Journal of Jiangsu Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10971220) 全国优秀博士学位论文作者专项基金资助项目(200919) 中央高校基本科研业务费专项基金资助项目(2010LKSX04)
关键词 反射倒向随机微分方程 无限区间 广义一致连续 极大解 极小解 比较定理 reflected backward stochastic differential equation(RBSDE) infinite time horizon generalized uniformly continuous maximum solution minimum solution comparison theorem
  • 相关文献

参考文献12

  • 1Bismut J M. Theories probabiliste du control des diffusion[J]. Mem Amer Math Soc, 1976,167 (4) : 130.
  • 2Pardoux E, Peng Shige. Adapted solution of a backward stochastic differential equation[J]. Systems Control Lett, 1990,14 (1):55.
  • 3E1 Karoui N, Kapoudjian C, Pardoux E, et al. Reflected solutions of backward SDE's, and related obstacle problems for PDE's[J]. Ann Probab, 1997,25 (2) : 702.
  • 4El Karoui N, Pardoux E, Quenez M C. Reflected backward SDE's and American options[G]//Rogers L C G,Talay D. Nu- merical Method in Finance. Cambrige:Cambridge Univ Press, 1997:215.
  • 5Matoussi A. Reflected solutions of hackward stochastic differential equations with continuous coefficient[J]. Statist Prob- ab Lett,1997,34(4) :347.
  • 6Kobylanski M,Lepeltier J P,Quenez M C, et al. Reflected BSDE with superlinear quadratic coefficient[J]. Probab Math Statist,2002,22(1) :51.
  • 7Xu Mingyu. Backward stochastic differential equations with reflection and weak assumptions on the coefficients[J]. Stoch Process Appl,2008,118(6) :968.
  • 8Hamadenen S,Lepeltier J P,Wu Zhen. Infinite horizon reflected backward stochastic differential equations and apllications in mixed control and game problems[J]. Probab Math Statist,1999,19(2) :211.
  • 9Fan Shengjun,Jiang Long,Tian Dejian. One-dimensional BSDEs with finite and infinite time horizons[J].Stoch Process Appl,2011,121(3) :427.
  • 10Chen Shaokuan. Lp solutions of one-dimensional backward stochastic differential equations with continuous coefficients [J].Stoch Anal Appl,2010,28(5) :820.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部