摘要
得到了一类带单边连续下障碍的反射倒向随机微分方程(RBSDE)极小解的存在定理和比较定理,其生成元g满足广义线性增长条件且关于(y,z)连续,时间区间可以是有限或无限的.推广了倒向随机微分方程理论(BSDE)和RBSDE在一维情况下的相应结果.
The existence theorem and comparison theorem of solution for the reflected backward stochastic differenti- al equations(RBSDE) are devoted,where the time horizon may be finite or infinite, and the hypotheses on g are not necessary to be uniform in t. If the generators are continuous and of linear-growth in (y,z), both the existence theo- rem and comparison theorem of minimum solutions to the RBSDE will hold true.
出处
《江苏师范大学学报(自然科学版)》
CAS
2012年第3期18-23,共6页
Journal of Jiangsu Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(10971220)
全国优秀博士学位论文作者专项基金资助项目(200919)
中央高校基本科研业务费专项基金资助项目(2010LKSX04)
关键词
反射倒向随机微分方程
无限区间
广义一致连续
极大解
极小解
比较定理
reflected backward stochastic differential equation(RBSDE)
infinite time horizon
generalized uniformly continuous
maximum solution
minimum solution
comparison theorem