期刊文献+

一种基于密度聚类Nystrom抽样算法 被引量:2

A Nystrom Sampling Algorithm Based on Density Clustering
下载PDF
导出
摘要 核矩阵在很多机器学习算法中发挥了重要作用,但核矩阵处理的开销非常大。Nystrom方法是流行的抽样方法,抽样使得在处理较大型核矩阵时减少了计算负担。但是,Nystrom方法抽样时采用的是对矩阵进行行、列随机抽样,所以使得准确性受到影响。本文提出了一种基于密度的聚类Nystrom方法,使用密度类算法选出的中心点作为标志点,通过提高聚类的速度和质量来提高Nystrom方法的速度和质量,从而提高了抽样的效率和准确性。 Nuclear matrix has played an important role in many machine learning algorithms, but its calculation is very large. As a popular sampling method, the Nystrom sampleing algorithm reduces the computational burden of dealing with larger nuclear matrix. However, the Nystrom method is based on random sampling from rows or columns of a matrix, affecting the accuracy. The paper presents a Nys- trom method based on density clustering,which employs the algorithm based on density clustering to se- lect a symbol of the center point as landpoints, Therefore, the speed and quality of the Nystrom method can be improved by increasing the speed and quality of clustering, as well the sampling efficiency and ac- curacy will be promoted.
出处 《计算机工程与科学》 CSCD 北大核心 2012年第11期148-152,共5页 Computer Engineering & Science
关键词 NYSTROM方法 聚类 标志点 Nystrom method clustering landpoints
  • 相关文献

参考文献11

  • 1Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding[J]. Science, 2000,290 (5500) : 2323-2326.
  • 2Tenenbaum J B,de Silva V, Langford J C. A Global Geomet- ric Framework for Nonlinear Dimensionality Reduetion[J]. Science, 2000,290(5500) :2319-2323.
  • 3Beikin M, Niyngi P. Laplaeian Eigenmaps and Spectral Techniques for Embedding and Clustering[C]///Proc of Advances in Neural Information Processing Systems, 2001:585-591.
  • 4Ding C, He X. Linearized Cluster Assignment Via Spectral Ordering[C]///Proc of the 21st International Conf on Ma- chine Learning, 2004 : 30-37.
  • 5Mika S,Rgtsch G,Weston J,et al. Fisher Diseriminant Anal ysis With Kernels[C]//Proc of 1EEE Neural Netw, 1999: 41-48.
  • 6SchOlkopf B,Smola A, Maller K-R. Nonlinear Component A nalysis As a Kernel Eigenvalue Problem[J]. Neural Comput, 1998,10(5) : 1299-1319.
  • 7Williams C K I, Seeger M. The Effect of the Input Density Distribution on Kernel-Based Classifiers[C]//Proe of the 17th International Conf on Machine Learning, 2000: 1159- 1166.
  • 8Baker C T H. The Numerical Treatment of Integral Equa tions[R]. Oxford:Clarendon, 1977.
  • 9Fowlkes C, Belongie S,Chung F,et al. Spectral Grouping U- sing the Nystrom Method[J]. IEEE Transactions on Pattern Anal Mach Intell,2004,26(2) :214-225.
  • 10Kumar S, Mohri M, Talwalkar A. On Sampling-Based Ap- proximate Spectral Decomposition[C]//Proc of Internation- al Conf on Machine Learning, 2009:585-592.

同被引文献20

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部