摘要
用交替方向隐式欧拉方法研究二维带有弱奇异核的偏积分微分方程的数值解,在空间方向上采用二阶差商,时间方向上使用向后欧拉方法,积分项用一阶卷积求积逼近.该方法具备了交替方向存储量少,计算量低的特点.
Alternating direction implicit (ADI)-Euler schemes are formulated for two-dimensional partial integro-differential equations with a weakly singular kernel. These techniques are based on the second-order difference quotient in space and the backward Euler in time in combination with order one convolution quadrature approximating the integral term. The method has less storage and low computational characteristics.
出处
《湖南理工学院学报(自然科学版)》
CAS
2012年第3期11-13,40,共4页
Journal of Hunan Institute of Science and Technology(Natural Sciences)
基金
湖南省教育厅资助项目(09C469)
关键词
偏积分微分方程
交替方向有限差分法
向后欧拉方法
partial integro-differential equations
alternating direction finite difference method
backward Euler method.