摘要
A particle mapping transportation algorithm was proposed on the basis of the particle-in-cell method.The particles with rectangular influence domains were employed in the transportation algorithm to reduce the numerical fluctuations.Based on the error analysis in the process of particle motion computation,a prediction-correction algorithm was introduced to improve the computational accuracy.Furthermore,the performance of the particle mapping transportation method was evaluated by using the rotation,the slotted disk and the shear advection tests,and the results were compared with other interface reconstruction methods.Finally,the hemispherical projectile penetration into a steel target was numerically simulated.The results showed that the proposed method produced less numerical fluctuations and exhibited clear material interfaces,which indicated that it is accurate and effective.
A particle mapping transportation algorithm was proposed on the basis of the particle-in-cell method.The particles with rectangular influence domains were employed in the transportation algorithm to reduce the numerical fluctuations.Based on the error analysis in the process of particle motion computation,a prediction-correction algorithm was introduced to improve the computational accuracy.Furthermore,the performance of the particle mapping transportation method was evaluated by using the rotation,the slotted disk and the shear advection tests,and the results were compared with other interface reconstruction methods.Finally,the hemispherical projectile penetration into a steel target was numerically simulated.The results showed that the proposed method produced less numerical fluctuations and exhibited clear material interfaces,which indicated that it is accurate and effective.
基金
supported by the National Basic Research Program of China(Grant No.2010CB832706)
the National Natural Science Foundation of China(Grant Nos.11032002 and 11172041)
the Project of State Key Laboratory of Explosion Science and Technology(Grant No. ZDKT10-03c)