期刊文献+

信道压缩表示的OFDM快衰落信道估计 被引量:1

Estimation of Fast Fading Channel for OFDM Systems Using Compressed Channel Expression
下载PDF
导出
摘要 针对正交频分复用系统提出基于信道压缩表示的快衰落信道估计算法.该方法采用一种紧凑型信道冲激响应(channel impulse response,CIR)矩阵及信道核向量的信道压缩表示方法,减少了CIR矩阵中的未知元素数目.推导了等效信道模型以及CIR矩阵与信道核向量之间的闭式表达式,利用最小二乘和线性最小均方差估计器估计出信道核向量,并由其重构出CIR矩阵,从而实现了信道压缩表示的OFDM快衰落信道估计.仿真结果表明,该算法能对快衰落信道进行有效估计,并降低系统传输BER. An algorithm using channel compressed expression for estimation of fast fading channel in orthogonal frequency division multiplexing (OFDM) systems is proposed. Specifically, a compressed channel expression based on compact channel impulse response (CIR) matrix and channel kernel vector is introduced, and an equivalent channel model is derived. Both least square (LS) and linear minimum mean square error (LMMSE) estimators are formulated to estimate the channel kernel vector. The CIR matrix is reconstructed from the channel kernel vector. Simulation results show that the proposed algorithm has better estimation accuracy and lower BER as compared to some existing estimation techniques.
出处 《应用科学学报》 EI CAS CSCD 北大核心 2012年第6期581-587,共7页 Journal of Applied Sciences
基金 国家自然科学基金(No.61271213 No.60972056 No.61132004)资助
关键词 快衰落 信道估计 正交频分复用 信道压缩表示 fast fading, channel estimation, orthogonal frequency division multiplexing (OFDM), compressed channel expression
  • 相关文献

参考文献11

  • 1Kim J G, Lim J T. MAP-based channel estimation forMIMO-OFDM over fast Rayleigh fading channels [J].IEEE Transactions on Vehicular Technology, 2008,57(3): 1963-1968.
  • 2Chen Y C, Su Y T. MIMO channel estimation in cor-related fading environments [J]. IEEE Transactionson Wireless Communications, 2010, 9(3): 1108-1119.
  • 3Al-naffouri T Y, Islam K M Z, Al-dhahir N,Lu S. model reduction approach for OFDM chan-nel estimation under high mobility conditions [J].IEEE Transactions on Signal Processing, 2010, 58(4):2181-2193.
  • 4Rabbi M F, Hou S W, Ko C C. High mobilityorthogonal frequency division multiple access chan-nel estimation using basis expansion model [J]. IETCommunications, 2010, 4(3): 353-367.
  • 5Zhong K, Lei X, Li S Q. Wiener filter for basis ex-pansion model based channel estimation [J]. IEEECommunications Letters, 2011,15(8): 813-815.
  • 6Hrycak T,Das S, Matz G, Feichtinger H G. Lowcomplexity equalization for doubly selective channelsmodeled by a basis expansion [J]. IEEE Transactionson Signal Processing, 2010, 58(11): 5706-5719.
  • 7Tugnait J K, He S C, Kim H S. Doubly selectivechannel estimation using exponential basis modelsand subblock tracking [J]. IEEE Transactions on Sig-nal Processing, 2010,58(3): 1275-1289.
  • 8Tang Z J, Cannizzaro R C, Leus G, BanelliP. Pilot-assisted time-varying channel estimation forOFDM systems [J]. IEEE Transactions on SignalProcessing, 2007,55(5): 2226-2238.
  • 9Kannu A P, Schniter P. MSE-optimal training forlinear time-varying channels [C]//2005 IEEE Inter-national Conference on Acoustics, Speech, and SignalProcessing (ICASSP), 2005: iii/789-iii/792.
  • 10Leus G. On the estimation of rapidly time-varyingchannels [C]//2004 European Signal Processing Con-ference (EUSIPCO), 2004: 2227-2230.

同被引文献19

  • 1BAJWN W U, SAYEED A M, NOWAK R. Sparse multi- path channels: modeling and estimation [C]//Digital Signal Processing Workshop and 5th IEEE Digital Signal Processing Education Workshop, Marco Is- land, FL, 2009: 320-325.
  • 2CARBONELLI C, VEDANTAM S, MITRA U. Sparse channel estimation with zero tap detection [J]. IEEE Transactions on Wireless Communication, 2007, 6(5): 1743-1753.
  • 3WAN F, ZHU W P, SWAMY M N S. Semi-blind most significant tap detection for sparse channel esti- mation of OFDM systems [J]. IEEE Transactions on Circuits and Systems-I: Regular Papers, 2010, 57(3): 703-713.
  • 4DONOHO D. Compressed sensing [J]. IEEE Transac- tions Information Theory, 2006, 52(4): 1289-1306.
  • 5BAJWN W U, HAUPT J, SSYEED A M, NOWAK R. Compressed channel sensing: a new approach to es- timating sparse multipath channels [J]. IEEE Trans- actions on Signal Processing, 2010, 98(6): 1058-1076.
  • 6TAUBOCK G, HLAWATSCH F, EIWEN D, RAUHUT H. Compressive estimation of doubly selective channelsin multicarrier systems: leakage effects and sparsity- enhancing processing [J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 255-271.
  • 7KHOJASTEPOUR M A, GOMADAM K, WANG X D. Pilot-assisted channel estimation for MIMO OFDM systems using theory of sparse signal recovery [C]// IEEE International Conference on Acoustics, Speech and Signal Processing, 2009: 2693-2696.
  • 8PENG Yuexing, YANG Xiao, YANG Xiaofeng, WANG Wenbo, Wu Bin. Compressed MIMO-OFDM chan- nel estimation [C]//12th IEEE International Con- ference on Communication Technology, 2010: 1291- 1294.
  • 9ZHAN(] W, XIA X, CHING P C. Optimal train- ing and pilot pattern design for OFDM systems in Rayleigh fading [J]. IEEE Transactions on Broad- casting, 2006, 52(4): 505-514.
  • 10HE Xueyun, SONG Rongfang. Pilot pattern optimiza- tion for compressed sensing based sparse channel es- timation in OFDM systems [C]//Wireless Commu- nications and Signal Processing (WCSP), 2010: 1-5.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部