期刊文献+

基于Shearlets变换的SAR图像去噪 被引量:3

De-noising of SAR Images Based on Shearlets Transform
下载PDF
导出
摘要 在合成孔径雷达(SAR)相干噪声模型基础上提出了一种基于剪切波(Shearlets)变换的SAR图像去噪算法.Shearlets变换继承了Curvele变换和Contourlet变换的优点,既有灵活的方向选择性又易于实现,并且对于包含C2奇异曲线或曲面的高维信号具有最优逼近特性.该文采用Shearlets逼近SAR图像,再用基于贝叶斯估计理论的双变量阈值函数对Shearlets变换系数进行处理得到去噪图像.仿真结果表明,相比使用同级Contourlet双变量阈值去噪,该算法峰值信噪比提高2 dB:相比使用非下采样Contourlet变换双变量阈值算法去噪,该算法去噪后图像不仅峰值信噪比有所提高,而且更平滑,计算时间也大大减少. This paper proposes a de-noising algorithm for SAR images based on Shearlets transform. Shearlets transformation is multi-scale geometric analysis which possesses the advantages of Contourlet transform and Curvelet transform. For a singular curve or surface containing C2 high-dimensional signals, it is an optimal approximation. We apply Shearlets to approach SAR images, and use a bivaxiate threshold according to the Bayesian estimation theory to perform image de-noising. The obtained results show an increase of 2 dB in PSNR as compared to the Contourlet-based method with a bivariate threshold. Compared with the non- subsampled Contourlet method with a bivariate threshold, the proposed method gives a higher PSNR and smoother denoised images. In addition, computation complexity is reduced.
出处 《应用科学学报》 EI CAS CSCD 北大核心 2012年第6期629-634,共6页 Journal of Applied Sciences
基金 国家自然科学基金(No.60572093) 北京市自然科学基金(No.4102050) 航空科学基金与航空电子系统射频综合仿真航空科技重点实验室基金(No.201120M5007)资助
关键词 去噪 剪切波 轮廓波 合成孔径雷达 de-nosing, Shearlets, Contourlet, synthetic aperture radar (SAR)
  • 相关文献

参考文献16

  • 1Touzi R. review of speckle filtering in the con-text of estimation theory [J]. IEEE Transactions onGeoscience and Remote Sensing, 2002, 40(11): 2392-2404.
  • 2Liu Z X, Hu S H, Xiao Y,Qu G Z,Kim K S, SAR im-age target extraction based on 2-D leapfrog filtering[C]// Proceedings of 2010 IEEE 10th InternationalConference on Signal Processing, (ICSP2010), 2010:1943-1946.
  • 3Lee J S, Jurkevich L, Dewaeleb P,OosterlinckA.Speckle filtering of synthetic aperture radar im-ages: a review [J]. Remote Sensing Reviews, 1994,8(4): 313-340.
  • 4Do M. N. Directional multiresolution image repre-sentation [D]. Lausanne, Switzerland: Ecole Poly-technique Federale de Lausanne, 2001.
  • 5Do M N, Vetterli M. Contourlets: a directionalmultiresolution image representation [C]// Proceed-ings of IEEE International Conference on Image Pro-cessing, Rochester, NY: 2002: 357-360.
  • 6Eslami R, Radha H. Wavelet based Contourlettransform and it,s application to image coding [C]//IEEE International Conference on Image Processing,Singapore, 2004: 3189-3192.
  • 7Guo K, Labate D. Optimally sparse multidimen-sional representation using Shearlets [J]. SIAM Jour-nal on Mathematical Analysis, 2007,39(1): 298-318.
  • 8Lim W Q. The discrete Shearlets transform: anew directional transform and compactly supportedShearlets frames [J]. IEEE Transaction Image Pro-cessing, 2010, 19(5): 1166-1180.
  • 9Easley G, Labate D, Lim W Q. Sparse direc-tional image representation using the discrete Shear-lets transform [J].pplied and Computational Har-monic Analysis, 2008, 25(1): 25-46.
  • 10秦翰林,李佳,周慧鑫,赖睿,刘上乾.采用剪切波变换的红外弱小目标背景抑制[J].红外与毫米波学报,2011,30(2):162-166. 被引量:23

二级参考文献32

  • 1桑农,唐奇伶,张天序.基于初级视皮层抑制的轮廓检测方法[J].红外与毫米波学报,2007,26(1):47-51. 被引量:30
  • 2胡正磊,孙进平,袁运能,毛士艺.基于小波边缘提取和脊线跟踪技术的SAR图像河流检测算法[J].电子与信息学报,2007,29(3):524-527. 被引量:16
  • 3CANDES E J,DONOHO D L.Fast discrete curvelet transform[J].Multiscale Modeling Simulation,2005(5):861-899.
  • 4DO M N,VETTERLI M.Contourlets,beyond wavelets[M].WELLAND G V.[S.1.]:Academic Press,2003.
  • 5GUO K,LABATE D.Optimally Sparse multidimensional representation using Shearleta[J].SIAM Journal on Mathematical Analysis,2007,39(1):298-318.
  • 6EASLEY G R,LABATE D.Sparse directional image representations using the discrete Shearlet transform[J].Applied Computational Harmonic Analysis,2008,25(1):25-46.
  • 7PO D D-Y,DO M N.Directional muhiscale modeling of images using the Contourlet transform[J].IEEE Transactions on Imase Processing,2006,15(6):1610-1620.
  • 8MALLAT S.A wavelet tour of signal processing[M].2nd ed.[S.1.]:Academic Press,1999.
  • 9STARCK J L,CANDES E J,DONOHO D L.The curvelet transform for image de-noising[J].IEEE Transactions on Image Processing,2002,11(6):670-684.
  • 10DO M N,VETTERLI M.The Contourlet transform:An efficient directional multiresolution image resolution[J].IEEE Transactions on Image Processing,2005,14(12):2091-2106.

共引文献54

同被引文献59

  • 1吴亚东,孙世新.基于二维小波收缩与非线性扩散的混合图像去噪算法[J].电子学报,2006,34(1):163-166. 被引量:34
  • 2LIM W Q. The discrete shearlets transform: a new di- rectional transform and compactly supported Shear- lets frams [J]. IEEE Transactions on Image Process- ing, 2010, 19(5): 1166-1180.
  • 3GILBOA C,, SOCHEN N, ZEEVI Y Y. Forward-and- backward diffusion processes for adaptive image en- hancement and denoising [J]. IEEE Transactions on Image Processing, 2002, 11(7): 689-703.
  • 4ZHANG F, YOO Y M, KOH L M. Nonlinear diffusion in Laplacian pyramid domain for ultrasonic speckle reduction [J]. IEEE Transactions on Medical Imag- ing, 2007, 26(7): 200-211.
  • 5Yu J H, WANG Y Y, SHEN Y Z. Noise reduction and edge detection via kernel anisotropic diffusion [J]. Pattern Recognition Letters, 2008, 29(10): 1496- 1503.
  • 6AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation [J]. IEEE Transations on Image Processing, 2006, 54(11): 4311-4322.
  • 7TROPP J A, GIBERT A C. Signal recovery from ran- dom measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.
  • 8MANCERA L, PORTILLA J. L0-norm-based sparse rep- resentation through alternate projection [C]//IEEE International Conference on Image Processing, At- lanta, 2006: 2089-2092.
  • 9SZLAM A, KAVUKCOUGLU K, YANN L C. Convolut- ional matching pursuit and dictionary training[EB/ OL].[2010-10-3]. http://arxiv.org/abs/1010.0422.
  • 10M allat S. A wavelet tour of signal processing[ M]. USA:Academic Press, 1998.

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部