期刊文献+

求解Kuramoto-Sivashinsky方程的平移基无单元Galerkin方法 被引量:3

The element-free Galerkin method based on the shifted basis for solving the Kuramoto-Sivashinsky equation
原文传递
导出
摘要 Kuramoto-Sivashinsky方程是一种可以描述复杂混沌现象的高阶非线性演化方程.方程中高阶导数项的存在,使得传统无单元Galerkin方法采用高次多项式基函数构造形函数时,形函数违背了一致性条件.因此,本文提出了一种采用平移多项式基函数的无单元Galerkin方法.与传统无单元Galerkin方法相比,该方法在方程离散时依然采用Galerkin进行离散,但形函数的构造采用了基于平移多项式基函数的移动最小二乘近似.通过对具有行波解和混沌现象的Kuramoto-Sivashinsky方程的数值模拟,验证了本文方法的有效性. The Kuramoto-Sivashinsky equation is a kind of high-order nonlinear evolution equation which can describe complicated chaotic nature. Due to the existence of high-order derivatives in the equation, the shape functions violate the consistency conditions when using traditional element-free Galerkin method which adopts high-order polynomial basis functions to construct the shape functions. In order to solve the problems encountered in the traditional element-free Galerkin method, a kind of element-free Galerkin method adopting the shifted polynomial basis functions is presented in this paper. Compared with the traditional element-free Galerkin method, the Galerkin principle is still used to discrete the equation in this method, but the shape functions are constructed by moving least squares based on the shifted polynomial basis functions. Numerical results for the Kuramoto-Sivashinsky equation having traveling wave solution and chaotic nature prove the validity of the presented method.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第23期22-30,共9页 Acta Physica Sinica
基金 国家重点基础研究发展计划(批准号:2012CB025903) 国家自然科学基金(批准号:10871159)资助的课题~~
关键词 无单元Galerkin方法 KURAMOTO-SIVASHINSKY方程 平移多项式基函数 混沌现象 element-free Galerkin, Kuramoto-Sivashinsky equation, shifted polynomial basis functions, chaoticnature
  • 相关文献

参考文献15

  • 1Kuramoto Y, Tsuzuki T 1975 Prog. Theor. Phys.,54,687.
  • 2Sivashinsky G I 1977 Acta Astrorsautica 4 1177.
  • 3Hyman J M, Nicolaenko B.1986.Physica D 18 113.
  • 4Kuramoto Y, Tsuzuki T 1976 Pron. Theor. Phys.,55,356.
  • 5Sivashinsky G I, Michelson D M.1980 Pron. Theor. Phys. 63 2112.
  • 6Sivashinsky G I.1983.Ann. Rev. Fluid Mech. 15 179.
  • 7Fan E.2000 Phys. Lett. A 277 212.
  • 8Peng Y Z.2003.Commun. Theor. Phys. 39 641.
  • 9Nickel J.2007.Chaos, Solitons and Fractals 33 1376.
  • 10Wang J F, Sun F X, Cheng R J.2010.Chin. Phys. B 19 060201.

同被引文献7

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部