期刊文献+

基于热质理论的广义热弹性动力学模型 被引量:2

Dynamic model of generalized thermoelasticity based on thermal mass theory
原文传递
导出
摘要 具有微尺度传热特征的超常传热过程中,热流矢与温度梯度之间存在延迟效应,且热流的运动受到空间效应的影响.基于热质概念的普适导热定律,结合Clausius不等式和Helmholtz自由能公式,构建了计及热流矢和温度对时间和空间惯性效应的广义热弹性动力学模型,推导了各向同性材料超常传热行为的热弹性控制方程组.通过与已有广义热弹性动力学模型进行对比分析可得,当热流密度不大的条件下,热流矢与温度对空间的惯性效应可忽略时,基于热质概念的广义热弹性模型可分别退化为L-S,G-L和G-N的模型;对于尺度微观、稳态导热条件时,热流矢与温度对空间的惯性效应不可忽略,此时导热系数将受到热质运动惯性效应的影响,利用所建模型可揭示稳态导热时呈现的非傅里叶现象,并可避免基于已有广义模型得到的导热系数随结构特征尺寸变化的非物理现象. A lagging response in time exists between the propagation of heat flux and the establishment of temperature gradient and it is affected by the space effect during the heat conduction with the micro-scale property. Based on the general heat conduction law of thermal mass, the dynamic model of generalized thermoelasticity is established by Clausius inequality and Helmholtz free energy, where the inertia effect on the time and space of heat flux and temperature is involved. The guiding equations are derived and given for the isotropic and homogeneous materials. By comparison with the existing models of generalized thermoelasticity, the guiding equations can reduce to the L-S, G-L and G-N models when the heat flux is not very high, so that the inertia effect on space of heat flux and temperature can be ignored. For micro-scale heat conduction, the heat flux may be very high and the inertial force due to the spatial velocity variation cannot be ignored, the non-Fourier phenomenon will take place even under steady state condition. In such cases, the thermal conductivity is affected by the inertia effect of the space, which can be explained by the model established in the paper. Meanwhile, the physically impossible phenomenon that thermal conductivity changes with structure size induced by existing generalized model can also be eliminated.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第23期308-312,共5页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11102073 50978125) 江苏省自然科学基金(批准号:BK2008234) 江苏大学高级人才启动基金(批准号:10JDG055)资助的课题~~
关键词 热质 普适导热定律 广义热弹性动力学模型 微尺度传热 thermal mass, general heat conduction law, dynamic model of generalized thermoelasticity, micro-scale heat conduction
  • 相关文献

参考文献4

二级参考文献91

共引文献65

同被引文献18

  • 1Herwig H, Beckert K. Experimental evidence about the controversy concerning Fourier and non-Fourier heat conduction in materials with a nonhomogeneous inner structure. Heat Mass Transfer, 2000, 36(5): 387-392.
  • 2Lord HW, Shulman Y. A generalized dynamical theory of thermoe- lasticity. Journal of the Mechanics and Physics of Solids, 1967, 15(5): 299-309.
  • 3Green AE, Lindsay KA. Thermoelasticity. Journal of Elasticity, 1972, 2(1): 1-7.
  • 4Green AE, Naghdi PM. Thermoelasticity without energy dissipa- tion. Journal of Elasticity, 1993, 31(3): 189-208.
  • 5Youssef HM. Theory of two-temperature thermoelasticity without energy dissipation. Journal of Thermal Stresses, 2011, 34(2): 138- 146.
  • 6Possikhin YA, Shitikova MV. Application of fractional calculus to dynamic problems of linear and non linear hereditary mechanics ofsolids. Applied Mechanics Reviews, 1997, 50(1 ): 15-67.
  • 7Youssef HM. Theory of fractional order generalized thermoelastic- ity. ASME Journal of Heat Transfer, 2010, 132(6): 061301-7.
  • 8Sherief HH, E1-Sayed AMA, Abd E1-Latief AM. Fractional or- der theory of thermoelasticity. International Journal of Solids and Structures, 2010, 47(2): 269-275.
  • 9Youssef HM, Al-Lehalbi EA. Fractional order generalized thermoe- lastic half-space subjected to ramp-type heating. Mechanics Re- search Communications, 2010, 37(5): 448-452.
  • 10Kothari S, Mukhopadhyay S. A problem on elastic half space un- der fractional order theory of thermoelasticity. Journal of Thermal Stresses, 2011, 34(7): 724-739.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部