期刊文献+

融合李群理论与特征子空间基的图像目标跟踪 被引量:2

Image object tracking on integrating lie group theory with characteristic subspace eigenbasis
下载PDF
导出
摘要 针对复杂背景下目标跟踪窗口易受噪声干扰从而产生形变与漂移的问题,本文利用群空间中仿射群组受扰动后的形不变属性,将系统状态变量映射到李群空间进行处理,同时采用增量主元分析法(IPCA)算法实时学习并更新目标特征子空间数据.所提方法在利用粒子滤波算法采样粒子时,通过引入测量向量以提高权值计算的准确性.在基于Car11等4个测试集的实验中,结果优于IVT跟踪器,本文跟踪器窗口在噪声干扰下不会产生形变,跟踪成功率达到96%,结果优于IVT跟踪器.对比Kwon跟踪器,本文跟踪方法显著降低了算法复杂度,平均执行时间有效地控制在0.32s/帧. To reduce the distortion and deformation of the object window in tracking objects with noises under complicated circumstance,we map the system state-variables to Lie group space for processing based on the affine-group invariability under disturbances.The incremental principal-component-analysis(IPCA) algorithm is employed for instant learning and updating characteristic subspace databases of the object.In sampling particles by using the particle filters,we introduce the measurement vector to improve the precision in weight-computation.In the testing of four standard video databases Car11,no deformation of tracker window caused by noises is found,and the successful tracking ratio reaches 96 percent.These results overtake those of the tracker IVT.When compared with tracker Kwon,the algorithm complexity is significantly lower and the average execution time is effectively kept within 0.32 s/frame.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2012年第10期1272-1276,共5页 Control Theory & Applications
基金 国家自然科学基金资助项目(61101197 90820306 61072148) 山东省自然科学基金资助项目(ZR2011FM004) 高等学校博士点基金资助项目(20093219120025)
关键词 目标识别 群空间 学习 特征 object recognition group space learning character
  • 相关文献

参考文献9

  • 1宁小磊,王宏力,徐宏林,张忠泉.加权逼近粒子滤波算法及其应用[J].控制理论与应用,2011,28(1):118-124. 被引量:7
  • 2ROSS D A, L1M J, LIN R S, et al. Incremental learning for robust visual tracking [J]. International Journal of Computer Vision, 2008, 77(1): 125 - 141.
  • 3李广伟,刘云鹏,尹健,史泽林.基于改进李群结构的特征协方差目标跟踪[J].仪器仪表学报,2010,31(1):111-116. 被引量:9
  • 4KWON J, PARK F C. Visual tracking via particle filtering on the affine group [J]. The International Journal of Robotics Research, 2010, 29(2): 198 - 217.
  • 5刘佳,陈纯,叶承羲,李娜,卜佳俊.基于协方差描述子和黎曼流形的语音情感识别[J].模式识别与人工智能,2009,22(5):673-677. 被引量:5
  • 6SAHA S, MANDAL P K, BOERS Y, et al. Gaussian proposal density using moment matching in SMC methods [J]. Statistics and Comput- ing, 2008, 19(2): 203 - 208.
  • 7DOUCET A, GODSILL S, ANDRIEU C. On sequential monte carlo sampling methods for bayesian filtering [J]. Statistics and Comput- ing, 2000, 10(3): 197 - 208.
  • 8KWON J, CHOI M, PARK E et al. Particle filtering on the Euclidean group: framework and applications [J]. Robotica, 2007, 25(6): 725 - 737.
  • 9TUZEL O, PORIKLI F, MEER E Region covariance: a fast descrip- tor for detection and classification [C]//The 9th European Conference on Computer Vision. Berlin, Germany: Springer, 2006, 2:589 - 600.

二级参考文献33

  • 1莫以为,萧德云.进化粒子滤波算法及其应用[J].控制理论与应用,2005,22(2):269-272. 被引量:41
  • 2刘良江,王耀南.灰度直方图和支持向量机在磁环外观检测中的应用[J].仪器仪表学报,2006,27(8):840-844. 被引量:7
  • 3林奕琳,韦岗,杨康才.语音情感识别的研究进展[J].电路与系统学报,2007,12(1):90-98. 被引量:33
  • 4Pao T L, Chen Y T, Yeh J H. Emotion Recognition from Mandarin Speech Signals// Proc of the International Symposium on Chinese Spoken Language Processing. Hongkong, China, 2004 : 301 - 304.
  • 5Nicholson J, Takahashi K, Nakatsu R. Emotion Recognition in Speech Using Neural Networks. Neural Computing and Applications, 2000, 2(2) : 495 -501.
  • 6Yu Feng, Chang E, Xu Yingqing, et al. Emotion Detection from Speech to Enrich Multimedia Content// Proc of the IEEE Pacific Rim Conference on Multimedia. Beijing, China, 2001:550 -557.
  • 7Tuzel O, Porikli F, Meer P. Region Covariance : A Fast Descriptor for Detection and Classification// Proc of the 9th European Conference on Computer Vision. Graz, Austria, 2006, Ⅱ : 589 -600.
  • 8Fletcher P T, Joshi S. Riemannian Geometry for the Statistical Analysis of Diffusion Tensor Data. Signal Processing, 2007, 87 ( 2 ) : 250 - 262.
  • 9Pennec X, Fillard P, Ayache N. A Riemannian Framework for Tensor Computing. International Journal of Computer Vision, 2006, 66(1) : 41 -66.
  • 10ZHOU S K, CHELLAPPA R, MOGHADDAM B. Visual tracking and recognition using appearance adaptive models in particle filters [J]. IEEE Trans Image Processing. 2004, 13(11): 1491-1506.

共引文献18

同被引文献15

  • 1Toreyin B U,Dedeoglu Y,Cetin A E.Flame detection invideo using hidden Markov models[C].Proceedings ofthe IEEE International Conference on Image Processing(ICIP),2005:1230-1233.
  • 2Habiboglu Y H,Gunay O,Cetin A E.Real-time wildfiredetection using correlation descriptors[C].19th EuropeanSignal Processing Conference,2011:894-898.
  • 3Foo S Y.A rule-based machine vision system for fire detectionin aircraft dry bays and engine compartments[J].Knowledge-Based Systems,1995,12(9):531-541.
  • 4Fooladivanda A,Chehrerazi N,Sadri S,et al.Automaticsegmentation of pallet images using the 2-D wavelettransform and YUV color space[C].18th Iranian Conferenceon Electrical Engineering(ICEE),2010:319-324.
  • 5Li Wenhui,Fu Bo.A block-based video smoke detectionalgorithm[J].Journal of Software,2013,8(1):63-70.
  • 6Tuzel O,Porikli F,Meer P.Region covariance:a fastdescriptor for detection and classification[C].Proceedingsof 9th European Conference on Computer Vision,Graz,Austria,2006:589-600.
  • 7Porikli F,Tuzel O,Meer P.Covariance tracking usingmodel update based on lie algebra[C].IEEE Conferenceon Computer Vision and Pattern Recognition,NewYork,2006:728-735.
  • 8Forstner W,Moonen B.A metric for covariance matrices[J].Control Engineering,1999,30(12):45-49.
  • 9李广伟,刘云鹏,尹健,史泽林.基于改进李群结构的特征协方差目标跟踪[J].仪器仪表学报,2010,31(1):111-116. 被引量:9
  • 10赵璐华,彭涛.一种有效的SVM参数优化选择方法[J].制造业自动化,2010,32(9):146-149. 被引量:7

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部