期刊文献+

铝土矿连续磨矿过程球磨机优化控制 被引量:7

Optimal control for continuous bauxite grinding process in ball-mill
下载PDF
导出
摘要 针对铝土矿连续磨矿过程球磨机节能降耗问题以及铝土矿来源复杂、品位差异大等特点,提出了球磨机多目标多模型预测控制方法.该方法首先建立状态空间浓度预测模型和粒级质量平衡加权多模型细度预测模型.然后构建了包含磨机排矿浓细度区间控制和经济性能指标的多目标优化结构的多模型预测控制策略.最后采用乘子罚函数法求解控制器局部最优解.仿真及现场试验结果表明了该方案的有效性. Considering the reduction of power consumption of ball-mill, we propose a multi-objective multi-model predictive control for the continuous grinding process of bauxite with bauxite ores coming from different mine sources and with different qualities. In this method, we first build the state-space concentration-predictive model and the finenessprediction model based on the weighted multi-model of size-mass balance; and then, we develop an optimal multi-model predictive control scheme for optimizing multiple objectives including the interval control of concentration and fineness of the discharged ore pulp from the ball-mill, along with economic indices. The local optimal control law of the controller is obtained by minimizing a multiplier penalty function. The simulation and the field test results show the effectiveness of this method.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2012年第10期1339-1347,共9页 Control Theory & Applications
基金 国家自然科学基金资助项目(61134006 61273187) 新世纪优秀人才支持计划资助项目(NCET 08 0576)
关键词 磨矿过程 多模型预测控制 多目标优化 区间控制 乘子罚函数 mineral grinding process multiple model predictive control multiple objective optimization interval control multiplier penalty function
  • 相关文献

参考文献16

  • 1POMERLEAU A, HODOUIN D, DESBIENS A. A survey of grind- ing circuit control methods: from decentralized PID controllers to multivariable predictive controllers [J]. Powder Technology, 2000, 108(2/3): 103 - 115.
  • 2RAMASAMY M. Control of ball mill grinding circuit using model predictive control scheme [J]. Journal of Process Control, 2005, 15(3): 273 - 283.
  • 3CHEN X S, ZHAI J Y. Application of model predictive control in ball mill grinding circuit [J]. Minerals Engineering, 2007, 20(11): 1099 - 1108.
  • 4周平,柴天佑,陈通文.工业过程运行的解耦内模控制方法[J].自动化学报,2009,35(10):1362-1368. 被引量:22
  • 5GALAN O, BARTON G W. Robust control of a SAG mill [J]. Powder Technology, 2002, 124(3): 267 - 271.
  • 6NAJIM K, HODOUIN D, DESBIENS A. Adaptive control: state of the art and application to a grinding process [J]. Powder Technology, 1995, 82(1): 59 - 68.
  • 7CONRADLE A V E, ALDRICH C. Neuro control of a ball mill grinding circuit using evolutionary reinforcement learning [J]. Min- erals Engineering, 2001, 14(10): 1277 - 1294.
  • 8CHEN X S, LI S H. Expert systerm based adaptive dynamic matrix Control for ball mill grinding circuit [J]. Expert Systerms with Appli- cations, 2009, 36(1): 716 - 723.
  • 9RADHAKRISHNAN V R. Model based supervisory control of a ball mill grinding circuit [J]. Journal of Process Control, 1999, 19(3): 195 -211.
  • 10周平,柴天佑.多变量解耦控制的工业过程运行层次控制方法[J].控制理论与应用,2011,28(2):199-205. 被引量:10

二级参考文献39

  • 1刘涛,张卫东,顾诞英,蔡云泽.化工多变量时滞过程的频域解耦控制设计的研究进展[J].自动化学报,2006,32(1):73-83. 被引量:18
  • 2ZHOU P, CHAI T Y, YUE H, et al. Intelligent optimal control of grinding circuits for optimization of particle size index[C]//Proceedings of the 6th World Congress on Intelligent Control and Automation(WCICA ). Piscataway, USA: IEEE Press, 2006:6586 - 6591.
  • 3NIEROP M A V, MOYS M H. Measurement of load behaviour in an industrial grinding miU[J]. Control Engineering Practice, 1997, 5(2): 257 - 262.
  • 4KOLACZ J. Measurement system of the mill charge in grinding ball mill circuits[J]. Minerals Engineering, 1997, 10(12): 1329- 1338.
  • 5KIANGI K K, MOYS M H. Measurement of the load behaviour in a dry pilot mill using an inductive proximity probe[J]. Minerals Engineering, 2006, 19(13): 1348 - 1356.
  • 6WANG H C, WANG H S. A hybrid expert system for equipment failure analysis[J]. Expert Systems with Applications, 2005, 28(4): 615 - 622.
  • 7SEBORG D E, EDGAR T F, MELLICHAMP D A. Process Dynamics and Control[M]. New York: Johm Wiley and Sons Press, 2004.
  • 8FOURNIER B, RUPIN N, BIGERELLE M, et al. Application of the generalized lambda distributions in a statistical process control methodology[J]. Journal of Process Control, 2006, 16(10): 1087 - 1098.
  • 9Zhou P, Ding J L, Chai T Y, Wang H, Su C Y. An intelligent approach for supervisory control of grinding product particle size. In: Proceedings of the 46th IEEE Conference on Decision and Control. New Orleans, USA: IEEE, 2007. 1856-1861.
  • 10Skogestad S. Plantwide control: the search for the self- optimizing control structure. Journal of Process Control, 2000, 10(5): 487--507.

共引文献68

同被引文献111

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部