摘要
提出了一种基于自适应遗传算法的入侵检测方法。该方法采用自适应的适应度函数、交叉概率及变异概率取代固定的适应度函数、交叉概率及变异概率来改进遗传算法并用于入侵检测中。实验结果证明算法显著提高了自身收敛性能,具有很强的自适应能力,用于入侵检测中在保证较高检测率的基础上,对不同类型的攻击检测具有良好的均衡性。
An intrusion detection method based on adaptive genetic algorithm is presented. The adaptive fitness function, crossover probability and mutation probability replace the fixed fitness function, crossover probability and mutation probability to improve the genetic algorithm for intrusion detection. The experimental results show that the improved genetic algorithm to significantly improve the convergence performance, and has a strong adaptive ability, and guarantee higher detection rate on the basis of different types of attack detection has a good balance.
出处
《科学技术与工程》
北大核心
2012年第33期9075-9078,共4页
Science Technology and Engineering
关键词
遗传算法
自适应
入侵检测
网络安全
genetic algorithm
adaptive
intrusion detection
network security