期刊文献+

Chaos suppression of uncertain gyros in a given finite time 被引量:1

Chaos suppression of uncertain gyros in a given finite time
下载PDF
导出
摘要 The gyro is one of the most interesting and everlasting nonlinear dynamical systems, which displays very rich and complex dynamics, such as sub-harmonic and chaotic behaviors. We study the chaos suppression of the chaotic gyros in a given finite time. Considering the effects of model uncertainties, external disturbances, and fully unknown parameters, we design a robust adaptive finite-time controller to suppress the chaotic vibration of the uncertain gyro as quickly as possible. Using the finite-time control technique, we give the exact value of the chaos suppression time. A mathematical theorem is presented to prove the finite-time stability of the proposed scheme. The numerical simulation shows the efficiency and usefulness of the proposed finite-time chaos suppression strategy. The gyro is one of the most interesting and everlasting nonlinear dynamical systems, which displays very rich and complex dynamics, such as sub-harmonic and chaotic behaviors. We study the chaos suppression of the chaotic gyros in a given finite time. Considering the effects of model uncertainties, external disturbances, and fully unknown parameters, we design a robust adaptive finite-time controller to suppress the chaotic vibration of the uncertain gyro as quickly as possible. Using the finite-time control technique, we give the exact value of the chaos suppression time. A mathematical theorem is presented to prove the finite-time stability of the proposed scheme. The numerical simulation shows the efficiency and usefulness of the proposed finite-time chaos suppression strategy.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第11期126-131,共6页 中国物理B(英文版)
关键词 chaos suppression chaotic gyro finite-time stability ROBUSTNESS chaos suppression, chaotic gyro, finite-time stability, robustness
  • 相关文献

参考文献20

  • 1Ott E, Grebogi C and Yorke J A 1990 Phys. Rev. Lett. 65 3215.
  • 2Aghababa M P 2011 Nonlinear Dyn. 69 247.
  • 3Lu L, Li G, Guo L, Meng L, Zou J R and Yang M 2010 Chin. Phys. B 19 080507.
  • 4Liu Y Z, Jiang C S, Lin C S and Jiang Y M 2007 Chin. Phys. 16 660.
  • 5AghababaMP 2011 Chin. Phys. B 20 090505.
  • 6Hu J and Zhang Q J 2008 Chin. Phys. B 17 503.
  • 7Aghababa M P 2012 Chin. Phys. B 17 030502.
  • 8Bowong S 2007 Nonlinear Dyn. 49 59.
  • 9Chen H K 2002 J. Sound Vibr. 255 719.
  • 10Dooren R V 2008 J. Sound Vib. 268 632.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部