期刊文献+

Nano-scale gap filling and mechanism of deposit-etch-deposit process for phase-change material 被引量:1

Nano-scale gap filling and mechanism of deposit-etch-deposit process for phase-change material
下载PDF
导出
摘要 Ge2Sb2Te5 gap filling is one of the key processes for phase-change random access memory manufacture. Physical vapor deposition is the mainstream method of Ge2Sb2Te5 film deposition due to its advantages of film quality, purity, and accurate composition control. However,the conventional physical vapor deposition process cannot meet the gap- filling requirement with the critical device dimension scaling down to 90 nm or below. In this study, we find that the deposit-etch-deposit process shows better gap-filling capability and scalability than the single-step deposition process, especially at the nano-scale critical dimension. The gap-filling mechanism of the deposit-etch-deposit process was briefly discussed. We also find that re-deposition of phase-change material from via the sidewall to via the bottom by argon ion bombardment during the etch step was a key ingredient for the final good gap filling. We achieve void-free gap filling of phase-change material on the 45-nm via the two-cycle deposit-etch-deposit process. We gain a rather comprehensive insight into the mechanism of deposit-etch-deposit process and propose a potential gap-filling solution for over 45-nm technology nodes for phase-change random access memory. Ge2Sb2Te5 gap filling is one of the key processes for phase-change random access memory manufacture. Physical vapor deposition is the mainstream method of Ge2Sb2Te5 film deposition due to its advantages of film quality, purity, and accurate composition control. However,the conventional physical vapor deposition process cannot meet the gap- filling requirement with the critical device dimension scaling down to 90 nm or below. In this study, we find that the deposit-etch-deposit process shows better gap-filling capability and scalability than the single-step deposition process, especially at the nano-scale critical dimension. The gap-filling mechanism of the deposit-etch-deposit process was briefly discussed. We also find that re-deposition of phase-change material from via the sidewall to via the bottom by argon ion bombardment during the etch step was a key ingredient for the final good gap filling. We achieve void-free gap filling of phase-change material on the 45-nm via the two-cycle deposit-etch-deposit process. We gain a rather comprehensive insight into the mechanism of deposit-etch-deposit process and propose a potential gap-filling solution for over 45-nm technology nodes for phase-change random access memory.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第11期335-339,共5页 中国物理B(英文版)
基金 Project supported by the National Basic Research Program of China (Grant Nos.2010CB934300,2011CBA00607,and 2011CB932800) the National Integrate Circuit Research Program of China (Grant No. 2009ZX02023-003) the National Natural Science Foundation of China (Grant Nos. 60906004,60906003,61006087,and 61076121) the Science and Technology Council of Shanghai,China (Grant No. 1052nm07000)
关键词 deposit-etch deposit process single step deposit gap filling RE-DEPOSITION deposit-etch deposit process, single step deposit, gap filling, re-deposition
  • 相关文献

参考文献15

  • 1Feinleib J, Neufville J, Moss S C and Ovshinsky S R 1971 Appl. Phys. Lett. 18 254.
  • 2Adler D, Shur M S, Silver M and Ovshinsky S R 1980 J. Appl. Phgs. 51 3289.
  • 3Reifenberg J P, Panzer M A, Kim S B, Gibby A M, Ztmng Y, Wong S, W'ong H S P, Pop E and Goodson K E 2007 Appl. Phys. Lett. 91 111904.
  • 4Lai S and Lowrey T 2001 Tech. Dig. Int. Elec. Devi. Meet. 36 5.1.
  • 5Xiong F, Liao A D, Estrada D and Pop E 2011 Science 332 568.
  • 6Bin Y and Anantram M P 2011 IEEE Electron Dev. Lett. 32 1340.
  • 7Zhang T, Song Z T, Liu B, Liu W L, Feng S L and Chen B 2007 Chin. Phys. 16 2475.
  • 8Liu B, Song Z T, Zhang T, Feng S L and Gan F X 2004 Chin. Phys. 13 1167.
  • 9Rao F, Song Z T, Ren K, Zhou X L, Cheng Y, Wu L C and Liu B 2011 Nanotechology 22 145702.
  • 10Lee K H, Lee J W, Park J H, You D H and Seo T W 2008 Electrochem. Soc. Meet. 802 1917.

同被引文献10

  • 1沈自才,沈建,刘世杰,孔伟金,邵建达,范正修.渐变折射率薄膜的分层评价探讨[J].物理学报,2007,56(3):1325-1328. 被引量:15
  • 2Huaung Yifan, Chattopadhyay S, Jen Yijun , et ak Improved broad- band and quasi-omnidirectional antireilection properties with biomim- etic silicon nanostructions[J]. Nature Nanotechnology, 2007,2 (12): 770--774.
  • 3Chihhuang S, Jiang Peng,Jiang Bin. Broadband mottveye antireflectioncoatings on silicon[J]. Applied Physics Letters, 2008,92 (6) : 06112.
  • 4Huang Wehan, Chihhung S, Min Weilun, et al. Templated fabrica- tion of periodic binary nanostructures[J]. Journal of Physical Chem- istry, 2008,112(45) : 17586--17591.
  • 5Zhang Xintong, Akira F,Jin Ming, ta al. Double-layered tiO2-SiOz nanostructured films with self-cleaning and antireflective properties [J]. Physics Chemistry B,2006, 110(50).- 25142--25148.
  • 6Yao T F, Wu einghan, Wu T M, et al. Fabrication of anti-reflec- tive structures using hot embossing witha stainless steel template ir- radiated by femtosecond laser [J]. Microeleetronic Engineering, 2011, 88(9): 2908 2912.
  • 7Rayleigh L On reflection of vibrations at theconfines of two media between which the transition is gradual[J], proceedings of the Lon- don Mathematial Society, 1880,11(1) : 51--56.
  • 8Beemhard C G, Miller W H. A corneal nipple pattern in insect compound eyes[J]. Acta Physiologica Scandinavica, 1962, 56 (3-4): 385--38.
  • 9李腾,丁剑,范同祥.仿生纳米减反结构的制备[J].材料导报,2012,26(15):71-78. 被引量:2
  • 10董莹,杭凌侠,胡九龙.渐变折射率薄膜折射率轮廓的分层检测法[J].西安工业大学学报,2013,33(4):283-288. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部