期刊文献+

An asymptotic solving method for the periodic solution of a class of disturbed nonlinear evolution equation

An asymptotic solving method for the periodic solution of a class of disturbed nonlinear evolution equation
下载PDF
导出
摘要 A class of disturbed evolution equation is considered using a simple and valid technique. We first introduce the periodic traveling-wave solution of a corresponding typical evolution equation. Then the approximate solution for an original disturbed evolution equation is obtained using the asymptotic method. We point out that the series of approximate solution is convergent and the accuracy of the asymptotic solution is studied using the fixed point theorem for the functional analysis. A class of disturbed evolution equation is considered using a simple and valid technique. We first introduce the periodic traveling-wave solution of a corresponding typical evolution equation. Then the approximate solution for an original disturbed evolution equation is obtained using the asymptotic method. We point out that the series of approximate solution is convergent and the accuracy of the asymptotic solution is studied using the fixed point theorem for the functional analysis.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期37-41,共5页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant Nos.41175058,11071205,1202106,and 11101349) the Carbon Budget and Relevant Issues of the Chinese Academy of Sciences(Grant Nos.XDA01020304,KJ2012A001,and KJ2012Z245) the Natural Science Foundation of the Education Department of Anhui Province,China(Grant No.KJ2011A135) the Natural Science Foundation of Jiangsu Province,China(Grant No.BK2011042)
关键词 period solution traveling wave evolution equation asymptotic method period solution, traveling wave, evolution equation asymptotic method
  • 相关文献

参考文献22

  • 1McPhaden M J and Zhang D 2002 Nature 415 603.
  • 2Sirendaoreji J S 2003 Phys. Left. A 309 387.
  • 3Ma S H, Qiang J Y and Fang J P 2007 Commun. Theor. Phys. 48 662.
  • 4Parkes E J 2008 Chaos, Solitons and Fractals 38 154.
  • 5Yang J R and Mao J J 2008 Chin, Phys. Lett. 25 1527.
  • 6Yang X D, Ruan H Y and Lou S Y 2007 Commum. Theor. Phys. 48 961.
  • 7Yang J R and Mao J J 2008 Chin. Phys B 17 4337.
  • 8Pan L X, Zuo W M and Yan J R 2005 Acta Phys. Sin. 54 1 (in Chinese).
  • 9Lu D C, Hong B J and Tian L X 2006 Acta Phys. Sin. 55 5617 (in Chinese).
  • 10Tapgetusang and Sirendaoerji 2009 Acta Phys. Sin. 58 2121 (in Chinese).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部