期刊文献+

基于分类频繁模式挖掘的书目推荐策略与算法 被引量:4

Bibliographic Recommendation Strategy and Algorithm Based on Classified Frequency Pattern Mining
原文传递
导出
摘要 针对高校图书馆读者特点以及图书借阅的时间相关性等特征,提出一种基于分类频繁模式挖掘的图书推荐策略与算法。该策略根据高校图书馆图书借阅的时间周期性特征,将图书借阅数据划分为不同时间段的数据子集,进一步依据读者不同属性值,对不同类别读者在不同时段的数据子集上进行频繁模式挖掘。当某一个特定读者在特定时间进入系统时,便依据该作者所属类别在特定时段的频繁模式向该作者提供书目推荐服务。 For the characteristics of university libraries’readers and the relevant features of the time at which library’s books are borrowed,the bibliographic recommendation strategy and algorithm are pro posed based on classified frequency pattern mining.In terms of the characteristics of time periodicity for university’s borrowed books,the strategy divides book borrowing dates into different data subsets in differ ent time quantum.Further based on different readers’attribute value,frequency pattern mining is carried out for different categories of readers in a different subset of the data.When a specific reader enters the system at a particular time,based on the category of the author to the frequency patterns at a particular time,the system provides bibliographical recommendation service.
出处 《情报科学》 CSSCI 北大核心 2012年第12期1804-1806,1811,共4页 Information Science
基金 国家社会科学基金(12BTQ019) 哈尔滨师范大学人文社会科学科研培育基金(SXP2010-08) 黑龙江省教育厅人文社会科学面上项目(12512139)
关键词 书目推荐 数据挖掘 分类频繁模式挖掘 数字图书馆 bibliographic recommendation data mining classified frequency pattern mining digital li brary
  • 相关文献

参考文献5

二级参考文献125

  • 1冯志新,钟诚.基于FP-tree的最大频繁模式挖掘算法[J].计算机工程,2004,30(11):123-124. 被引量:18
  • 2魏育辉,潘洁.图书流通数据的关联挖掘量化分析方法[J].现代情报,2005,25(11):108-110. 被引量:30
  • 3王辉,高利军,王听忠.个性化服务中基于用户聚类的协同过滤推荐[J].计算机应用,2007,27(5):1225-1227. 被引量:43
  • 4Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 5Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 6梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 7Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 8Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
  • 9Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354
  • 10Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70

共引文献477

同被引文献98

引证文献4

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部