期刊文献+

一种基于本体的旅游资源二次推荐方法 被引量:2

A Double-Filtration Method of Recommendation for Tourism Resources Based on Ontology
原文传递
导出
摘要 信息科技的发展给旅游业带来了巨大改变。为减少用户寻找旅游资源的负担,充分利用用户的需求与偏好,综合考虑主客观因素,提出了一种基于本体的二次推荐方法。该方法引入本体来描述旅游资源,实现了用户的直接需求及偏好兴趣信息与推荐中过滤条件的关联,允许用户对推荐结果评价。实验结果表明,方法可行,推荐结果包含绝大部分用户的选择,具有较好的效果。 The development of information technology has brought tremendous changes to tourism.In or der to reduce the cost of seeking tourism resources for users,take full advantage of users’needs and pref erences,this paper presented an ontology-based double recommendation method after considering the subjective and objective factors.The method adopted ontology to describe tourism resources,achieved the goal of associating users’direct needs and their preferences or interests with filter conditions in recom mendation.Additionally,evaluations were permitted.Experimental results show that the proposed ap proach is feasible,the results of recommendation involve most of user’s choices,and the effect is good.
出处 《情报科学》 CSSCI 北大核心 2012年第12期1866-1871,共6页 Information Science
关键词 本体 推荐服务 酒店 用户偏好 ontology recommendation service hotel user preference
  • 相关文献

参考文献18

  • 1Niininen O, Buhalis D, March R. Customer empower- ment in tourism through consumer centric marketing (CCM) [J]. Qualitative Market Research: An Interna- tional Journal, 2007, 10(3):265-281.
  • 2许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:542
  • 3胡吉明.社会化推荐服务研究述评[J].情报科学,2011,29(2):308-311. 被引量:10
  • 4Aciar S V, Serarols-Tarres C, Royo-Vela M, et al. In- creasing effectiveness in e-commerce: Recommenda- tions applying intelligent agents[J]. International Jour- nal of Business and Systems Research, 2007, 1(1):81 - 97.
  • 5Lenar M, Sobecki J. Using recommendation to improve negotiations in agent-based systems[J]. Journal of Uni- versal Computer Science, 2007, 13(2):267 - 286.
  • 6Yuxia Huang, Ling Bian. A Bayesian network and ana- lytic hierarchy process based personalized recommen- dations for tourist attractions over the Internet[J]. Ex- pert Systems with Applications, 2009, 36(1):933 - 943.
  • 7Niemann M, Mochol M, Tolksdorf R. Enhancing hotel search with semantic web technologies[J]. Journal of Theoretical and Applied Electronic Commerce Re-search, 2008, 3(2):82 - 96.
  • 8Kanellopoulos D N. An ontology-based system for in- telligent matching of travellers' needs for group pack- age tours[J]. International Journal of Digital Culture and Electronic Tourism, 2008, 1(1):76 - 99.
  • 9Garcfa-Crespo A, Chamizo J, Rivera I, et al. SPETA: Social pervasive e-Tourism advisor[J]. Telematics and Informatics, 2009, 26(3):306 - 315.
  • 10Garcfa-Crespo A, Colomo-Palacios R, G6mez Berbfs J M, et al. Intelligent decision-support systems for e-tourism: Using SPETA II as a knowledge manage- ment platform for DMOs and e-tourism service provid- ers[J]. International Journal of Decision Support Sys- tem Technology, 2010, 2(1):35 - 47.

二级参考文献96

  • 1黄晓斌.社会书签与网络信息推荐服务[J].情报理论与实践,2006,29(1):122-124. 被引量:26
  • 2唐灿,朱征宇.基于模糊兴趣模型的个性化推荐算法[J].计算机工程与应用,2006,42(9):166-168. 被引量:11
  • 3潘红艳,陶剑文,杨华兵.基于信息项和用户群的信息推荐机制[J].情报学报,2006,25(5):600-605. 被引量:6
  • 4Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 6Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 7Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 8Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 9Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 10Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.

共引文献564

同被引文献32

  • 1吴必虎.旅游系统:对旅游活动与旅游科学的一种解释[J].旅游学刊,1998,13(1):20-24. 被引量:236
  • 2李善平,尹奇韡,胡玉杰,郭鸣,付相君.本体论研究综述[J].计算机研究与发展,2004,41(7):1041-1052. 被引量:274
  • 3李德仁,崔巍.地理本体与空间信息多级网格[J].测绘学报,2006,35(2):143-148. 被引量:49
  • 4Bradley N M, Albert I, Shyong K L, et al. MovieLens un-plugged: experiences with an occasionally connected recom- mender system[ C ]//Proceedings of the 8th international con- ference on intelligent user interfaces. New York, USA: [ s. n. ] ,2003:263-266.
  • 5Konstan J A, Miller B N, Maltz D, et al. GroupLens : applying collaborative filtering to Usenet news [ J . Communications of the ACM,1997,40(3) :77-87.
  • 6Hill W, Stead L, Rosenstein M, et al. Recommending and eval- uating choices in a virtual community of use [ C ]//Proceed- ings of the conference on human factors in computing systems. Denver, USA : ACM, 1995 : 194-201.
  • 7Shardanand U, Maes P. Social information filtering: algorithms for automating "word of mouth" [ C ]//Proceedings of the con- ference on human factors in computing systems. Denver, USA: ACM,1995:210-217.
  • 8Sarwar B, Karypis G, Konstan J, et al. Item-based collabora- tive filtering recommendation algorithms [ C ]//Proceedings of the 10th international world wide web conference. Hong Kong, China : IW3C2,2001:285-295.
  • 9Lemire D, Maclachlan A. Slope one predictors for online rating -based collaborative filtering[ C ]//Proceedings of SlAM data mining. NewPort Beach, California : Compensation Committee, 2005.
  • 10Dean J,Ghemawat S. MapReduce:simplied data processing on large clusters[ J]. Communications of the ACM ,2008,51 ( 1 ) : 107-113.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部