期刊文献+

基于OpenMP和Pardiso的柔性多体系统动力学并行计算 被引量:4

Parallel computing studies of flexible multibody system dynamics using OpenMP and Pardiso
原文传递
导出
摘要 为加快大型、复杂柔性多体系统的动力学仿真的速度,对多体系统动力学的并行算法进行研究。首先分析了微分代数方程(differential algebraic equations,DAEs)在数值计算求解过程中主要的计算量。据此,提出采用OpenMP并行计算系统的刚度矩阵、右端项和采用并行的稀疏线性方程组求解器Pardiso对线性方程组进行求解的并行策略。将这两种并行策略应用到自主开发的柔性多体系统动力学软件THUSolver中,实现了对多体系统动力学的并行计算。通过两个工程算例的仿真得到并行的加速比和计算效率,结果表明:采用的两种并行策略都有很高的计算效率,能大幅提高多体系统动力学仿真的速度。 Parallel algorithms were developed for multibody dynamic systems to accelerate the speed of dynamic simulations of large complex flexible multibody systems. The main computational loads during the numerical solution of the differential algebraic equations (DAEs) were analyzed with OpenMP then used to compute the system tangent matrix and residual vector in parallel and with a parallel sparse linear equation solver, Pardiso, used for the linear equations. Both of the parallel strategies were implemented in an in-house multibody algorithm for parallel analyses of multibody dynamic systems. The parallel speedup and the computational efficiency of the algorithm are quite good so the simulation speeds of multibody dynamic analyses are increased substantially.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第11期1643-1649,共7页 Journal of Tsinghua University(Science and Technology)
基金 国家重大专项课题子课题(2008ZX05024-003)
关键词 动力学 柔性多体系统 并行计算 dynamics flexible multibody system parallel computation
  • 相关文献

参考文献21

  • 1Anderson K S, Critchley J H. Improved "order-N" performance algorithm for the simulation of constraind multi rigid body dynamic systems [J]. Multibody System Dynamics, 2003, 9(2): 185-212.
  • 2Critchley J H, Anderson K S. A parallel logarithmic order algorithm for general multibody system dynamics [J]. Multibody System Dynamics, 2004, 12(1) : 75 - 93.
  • 3Anderson K S, Oghbaei M. A state-time formulation for dynamic systems simulation using massively parallel computing resources[J]. Nonlinear Dynamics, 2005, 39(3) : 305 - 318.
  • 4Quaranta G, Masarati P, Mantegazza P. Multibody analysis of controlled aeroelastic systems on parallel computers [J]. Multibody System Dynamics, 2002, 8(1) : 71 - 102.
  • 5Bauchau O A. Parallel computation approaches for flexible multibody dynamics simulations [J]. Journal of the Franklin Institute: Engineering and Applied Mathematics, 2010, 347(1): 53 - 68.
  • 6Chapman B, Jost G, Pas R. Using OpenMP: Portable Shared Memory Parallel Programming [M]. Cambridge, MA: MIT Press, 2008.
  • 7Gropp W, Lusk E, Skjellum A. Using MPI [M]. Cambridge, MA: MIT Press, 1999.
  • 8Anderson K, Mukherjee R, Critehley J, et al. POEMS: Parallelizable open-source efficient multibody software [J]. Engineering with Computers, 2007, 23(1) : 11 - 23.
  • 9常忠正,洪嘉振.基于MPI的柔性多体系统动力学并行计算[J].宇航学报,2006,27(1):89-93. 被引量:4
  • 10LIU Cheng, TIAN Qiang, HU Haiyan. Dynamics of a large scale rigid-flexible muhibody system composed of composite laminated plates [J]. Multibody System Dynamics, 2011, 26(3) : 283 - 305.

二级参考文献28

  • 1陆佑方,冯冠民,王彬,齐朝晖.柔性多体系统动力学─—理论和应用力学的一个活跃领域[J].力学与实践,1994,16(2):1-9. 被引量:12
  • 2潘振宽,赵维加,洪嘉振,刘延柱.多体系统动力学微分/代数方程组数值方法[J].力学进展,1996,26(1):28-40. 被引量:52
  • 3王琪,黄克累,陆启韶.树形多体系统动力学的隐式数值算法[J].力学学报,1996,28(6):717-725. 被引量:9
  • 4Haug E. Computer Aided Kinematics and Dynamics of Mechanical Systems. Vol 1: basic methods [M]. Needham: Allyn & Bacon, Inc, 1989.
  • 5Shabana A A. Flexible muhibody dynamics: review of past and recent developments [J]. Multibody System Dynamics, 1997, 1(2): 189-222.
  • 6Shabana A A. Dynamics of Multibody Systems [M]. New York: Cambridge University Press, 2005.
  • 7Yoo W S, Dmitroehenko O, Pogorelov D Y. Review of finite elements using absolute nodal coordinates for large-deformation problems and matching physical experiments [C]// Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Long Beach: ASME, 2005 : 1285 - 1294.
  • 8Shabana A A. Definition of the slopes and the finite element absolute nodal coordinate formulation[J].Multibody System Dynamics, 1997, 1(3): 339-348.
  • 9Shabana A A. Computer implementation of the absolute nodal coordinate formulation for flexible multibody dynamics [J]. Nonlinear Dynamics, 1998, 16(3): 293-306.
  • 10Dombrowski S. Analysis of large flexible body deformation in multibody systems using absolute coordinates [J]. Multibody System Dynamics, 2002, 8(4) : 409 - 432.

共引文献38

同被引文献39

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部