1P C CARRIAO, L FARIA, A biharmonic elliptic problem with dependence on the gradient and the Laplacian [ J ]. Electron. J. Differential Equations, (2009) 93,1-12.
2Li Chun, Tang chunlei, Three solutions for a Navier boundary value problem involving the p - biharmonic [ J ]. Nonlinear Anal. (2010) 72 : 1339-1347.
3Li li, Tang chunlei, Existence of three solutions for (p, q) - biharmonie systems [ J ]. Nonlinear Anal. , 73 ( 2010 ) : 796 -8O5.
4A C Lazer,P J McKenna ,On travelling waves in a suspen- sion bridge model as the wave speed goes to zero [ J]. Nonlinear Analysis : (2011 )74:3998 -4001.
6Ou zengqi, Tang ehunlei. Existence of solutions for a classof semilinear elliptic equations [ J ].西南师范大学学报(自然科学版),32(2007):1-5.
7Y H Ding, S X Luan, Multiple solutions for a class of non- linear Schrodinger equations [ J ]. J. Differential : Equations, (2004) 207:423 -457.
8Aixia Qian, Li Chong, Infinitely many solutions for a Rob- in boundary value problem [ J ]. International Journal of Differential Equations, ( 2010) ,9 : 1-9.
10M Willem, Minimax Theorems [ M ]. Birkhauser, Boston, 1996.
二级参考文献17
1Shi S. J., Li S. J., Existence of solutions for a class of semilinear equations with the Robin boundary value condition, Nonl. Anal., 2009, 71: 3292-3298.
2Schechter M., A variation of the mountain pass lemma and applications, J. London Math. Soc., 1991, 44: 491-502.
3Mao A. M., Zhang Z. T., Sign-changing and multiple sulutions of Kirchhoff type problems without the P. S. condition, Nonl. Anal., 2009, 70: 1275-1287.
4Wang X. J., Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Dill. Equa., 1991, 93: 283-310.
5Ye Q. X., Li Z. Y., Reaction and Diffusion Equantions, Beijing: Kexue Publishing Company, 1994.
6Evance L. C., Partial Differential Equations, Graduate Studies in Mathematics, Vol 19, Amer. Mathe. Soc. Providence, RI, 1998.
7Ji D. H., Tian Y., Ge W. C., The Existence of Positive Solution of Multi-Point Boundary Value Problem with a p-Laplace Operator, Acta Mathematica Sinica, Chinese Series, 2009, 52(1): 3-10.
8Ambrosetti A., Rabinowitz P. H., Dual variational methods in critical point theory and applications, J. Funct.Anal.. 1973. 14: 349-381.
9Zou W. M., Variant fountain theorems and their applications, Mannsc. Math.. 2001. 104: 343-358.
10Li G. B., Zhou H. S., Asymptotically linear Dirichlet problem for the p-Laplacian, Nonl. Anal. TMA, 2001,45: 1043-1055.