期刊文献+

考虑电力系统低碳效益的配电网分布式发电系统最优配置方法(英文) 被引量:15

Optimal Allocation of Dispersed Generations in Distribution Networks to Realize Low-Carbonate Power System
下载PDF
导出
摘要 由于分布式电源能够有效降低配电网中功率的损耗,分布式电源最优配置问题将会成为未来实现电力系统低碳化的关键技术之一。但由于该问题属于非线性离散最优化问题,一般的求解方法较难求得其最优解。提出一种基于枚举法的精确求解方法,通过约束条件大大减少了枚举的组合数,克服了枚举法易出现组合爆炸的缺点,成功解决了配电网分布式电源最优配置的求解问题。首先,给出分布式电源最优配置问题的数学模型,建立了优化目标和约束函数;其次,以6节点实验系统为例,阐述了该方法的详细步骤,并通过仿真结果,从原理上证明了该方法能够有效运用于该问题的求解;然后,将该方法运用于含有126个节点的实际配电网系统模型,并对电网损耗下降情况进行了计算分析。结果显示,该方法能够在短时间内计算得到一个分布式电源最优配置问题的解,同时保证该解在网损降低率上的误差与精确解相比不超过10%,显示了该方法在工程实用中的快速性和有效性。 An optimal allocation of dispersed generations (DGs) is one of the most promising approaches for engineering innovation in the near future to realize low-carbonate power system because installation of DGs with optimal location and sizing can reduce active power loss in power systems dramatically. The optimal allocation of DG is required to solve a non-linearly discrete optimization problem and generally approximation solution methods have been proposed due to its intractability. This paper proposes the approach based on an exact solution method using the enumerative method to solve such difficult optimal DG allocation problems. Although the enumerative method is simple, versatile and easy to use, it has the critical challenge which combinatorial explosion tends to occur. In order to solve this challenge, this paper proposes a new approach which reduces the number of combination by application of constraints. Also, the proposed approach is applied to the real size distribution system model which has 126 buses, and evaluated for active power loss reduction characteristics by DGs installation and calculation speed considering actual use.
出处 《电网技术》 EI CSCD 北大核心 2012年第12期1-10,共10页 Power System Technology
关键词 分布式电源 最优配置 功率损耗最小化 精确 解法 枚举法 dispersed generation optimized location power loss minimization exact method enumerative method
  • 相关文献

参考文献10

  • 1Kuroda K, lchimura T, Magori H, et al. A new approach for optimal location and sizing of distributed generation using an exact solution method[C]//ICSGCE 2012, Hong Kong, China, 2012.
  • 2Baran M E, Wu F F. Network reconfiguration in distribution systems for loss reduction and load balancing[J]. IEEE Trans on Power Delivery, 1989, 4(2): 1401-1407.
  • 3Nara K, Shiose A, Kitagawa M, et al. Implementation of genetic algorithm for distribution system loss minimum re-configuration [J]. IEEETrans on Power Systems, 1992, 7(3): 1044-1051.
  • 4eon Y J, Kim J C, Kim J O, et al. An efficient simulated annealing algorithm for network systems[J]. IEEE Trans 1078. reconfiguration in large-scale distribution on Power Delivery, 2002, 17(4): 1070-.
  • 5Zhang D, Fu Z, Zhang L. An improved TS algorithm for loss- minimum reconfiguration in large-scale distribution systems [J]. Electric PowerSystemReseareh, 2007, 77(5-6): 685-694.
  • 6Schmill J V. Optimum size and location of shunt capacitors on distribution feeders[J]: IEEE Trans on Power Apparatus and Systems, 1965, 84(9): 825-832.
  • 7Willis H L. Analytical methods and rules of thumb for modeling DG- distribution interaction[C]//IEEE Power Engineering Society Summer Meeting. 2000: 1643-1644.
  • 8Hung D Q, Mithulananthan N, Bansal R C. Analytical expressions for DG allocation in primary distribution networks[J]. IEEE Trans on Energy Conversion, 2010, 25(3): 814-820.
  • 9Elgerd O I. Electric energy system theory: an introduction[M]. New York: McGraw-Hill, 1971.
  • 10Yang H, Wen F, Wang L, et al. Newton-downhill algorithm for distribution power flow analysis[C]//2nd IEEE International. Conference on Power and Energy (PECon2008), Malaysia, 2008.

同被引文献155

引证文献15

二级引证文献241

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部