期刊文献+

电动汽车有序充电方法研究 被引量:79

Research on Scheme for Ordered Charging of Electric Vehicles
下载PDF
导出
摘要 未来规模化的电动汽车充电将会给电网的运行带来影响,无序的充电会给电网带来负面冲击。充电负荷具有时空双尺度的可调节性,利用此特性可在时间和空间上进行双尺度的负荷调度,使电动汽车充电负荷对电网运行产生积极的作用。基于此特性和实测的充电负荷数据,提出了一种基于负荷预测的有序充电方法,建立优化方程并求解,得到每个充电负荷的最优充电开始时间,通过改变充电开始时间调节总的负荷功率曲线。该方法能够在满足用户需求的基础上,尽可能利用低谷电为电动汽车充电,平抑负荷波动,减小负荷峰谷差,避免充电过程产生新的负荷高峰。仿真实验证明了该控制方法的有效性,并可从中看出受充电过程功率特性的限制和人类行为的影响,单纯依靠电动汽车充电进行负荷调节无法达到理想的效果。 Large-scale charging of electric vehicles (EV) in the future will affect power grid operation and unordered charging of EV will bring about negative impacts to power grid Chargin load possesses adjustability in time-scale and Space-scale, so it is possible to perform dual-scale load scheduling in time and space to make charging load of EV playing a positive role in power grid operation. Based on the feature of charging load and measured charging load data, a load forecasting-based ordered charging scheme is proposed and an optimization equation is established to obtain the optimal charging starting time for each charging load, and the total laod curve can be adjusted by changing charging starting times. On the basis of satisfying user demand, the proposed scheme can change EV in the valley period as far as possible to stablize the fluctuation of load and reduce load difference between peak and valley period, and the new peak load due to charging EV can be avoided. Simulation results shows that the proposed scheme is effective. It also can be seen from simulation results that due to the restriction of power characteristic of charging process and the influence of human behavior, it is unable to achieve ideal effect of load adjustment by means of charging EV only.
出处 《电网技术》 EI CSCD 北大核心 2012年第12期32-38,共7页 Power System Technology
基金 "十二五"国家科技支撑重大项目(2011BAG02B14) 国家863高技术基金项目(2011AA05A109)~~
关键词 电动汽车 有序充电 负荷预测 非线性优化 荷波动 electric vehicle ordered charging load forecasting nonlinear optimization load fluctuation
  • 相关文献

参考文献20

  • 1Mehdi E A, Kent C, Jason S. et at. Rapid-charge electric-vehicle stations[J]. IEEE Transactions on Power Delivery, 2010, 25(3).. 1883-1887.
  • 2Energy Information Administration, US Department of Energy. Annual energy review[R]. Washington DC: US Department of Energy, 2010.
  • 3Saber A Y, Venayagamoorthy G K. One million plug-in electric vehicles on the road by 2015[C]//12th international IEEE Conference on Intelligent Transportation Systems ITSC'09. St. Louis, Missouri, USA.. IEEE Intelligent Transportation Systems Society, 2009: 1-7.
  • 4Clement N K, Haesen E, Driesen J. The impact of charging plug-in hybrid electric vehicles on a residential distribution grid[J]. IEEE Transactions on Power Systems, 2010(25): 371-380.
  • 5Scotland W W F. The role of electric vehicles in Scotland's low carbon future[R]. Scotland." WWFScotland, 2010.
  • 6John V. Top 10 tech cars[R]. USA: The Institute of Electrical and Electronics Engineers, 2007.
  • 7Heydt G T. The impact of electric vehicle eployment on load management strategies[J]. IEEE Transactions on Power Appication System, 1983(144): 1253-1259.
  • 8Heider A, Haubrich H J. Impact ofwide-scale EV charging on the power supplynetwork[R]. Munich: Res.&Dev. Center, BMWAG, 1998, 6(262): 1-4.
  • 9Kristien C N, Edwin H, Johan D. The impact of charging plug-in hybrid electricvehicles on a residential distribution grid[J]. IEEE Transactions on Power Systems, 2010, 25(1): 371-380.
  • 10Hadley S W. Evaluating the impact of plug-in hybrid electric vehicles on regional electricity supplies[R]. SC, USA: Bulk Power System Dynamics and Control-VII Revitalizing Operational Reliability, 2007.

二级参考文献33

  • 1中华人民共和国国家统计局.2009年国民经济和社会发展统计公报[EB/OL].(2010-02-25)[2010-03-02].http://www.stats.gov.cn/tjgb/ndtjgb/qgndtjgb/t20100225_402622945.htm.
  • 2Adolfo P, Biagio C. The introduction of electric vehicles in the private fleet: potential impact on the electric supply system and on the environment[J]. Italy EnergyPolicy, 2010, 38(8): 4549-4561.
  • 3Axsen J, Kurani K. Anticipating plug-in hybrid vehicle energy impacts in California.- constructing consumer-informed recharge profiles[J]. Transportation Research, 2010, 15(4): 212-219.
  • 4Putrus G, Suwanapingkarl A, Johnston P. Impact of electric vehicles on power distribution networks[C]//IEEE Vehicle Power and Propulsion Conference, Dearborn, USA, 2009: 827-832.
  • 5Wynne J. Impact of plug-in hybrid electric vehicles on California's electricity grid[D]. North Carolina: Nicholas School of the Environment of Duke University, 2009.
  • 6Kintner M, Schneider K, Pratt R.. Impacts assessment of plug-in hybrid vehicles on electric utilities and regional US power grids part1: technical analysis[C]//Electric Utilities Environmental Conference, Tucson, USA, 2007: 1-23.
  • 7DeForest N, Funk J, Lorimer A. Impact of widespread electric vehicle adoption on the electrical utility business: threats and opportunities [EB/OL]. 2009-08-31. http://cet.berkeley.edu/dl/Utilities_Final_8-31-09.pdf.
  • 8Hutchinson R S. Power supply, protection, and harmonic analysis for an electric vehicle charging system in a large parking deck[D]. North Carolina: North Carolina State University, 2009.
  • 9Staats P T, Grady W M, Arapostathis A. A statistical method for predicting the net harmonic currents generated by a concentration of electric vehicle battery chargers[J]. IEEE Transs on Power Delivery, 1997, 12(3): 1258-1266.
  • 10Society of Automotive Engineers. SAE J 1772--2001 electric vehicle conductive charge coupler[S]. USA: 2001.

共引文献696

同被引文献673

引证文献79

二级引证文献1048

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部