期刊文献+

电热耦合模型应用于干式油气套管径向温度分布计算及其试验研究 被引量:10

Experimental Study on Electro-Thermal Coupling Model Applied in Computation of Radial Temperature Distribution of RIP Oil-Gas Bushing Condenser
下载PDF
导出
摘要 550 kV电容干式油气套管芯体温度场分布与套管长期安全稳定运行有直接关系,因此在该型套管样机试制过程中应对芯体内部径向温度分布进行研究。通过建立套管芯体电热耦合理论模型得到在线性材料条件下套管芯体径向温度分布规律,并运用电热耦合有限元模型在材料非线性条件下对理论模型进行推广,最后对套管芯体局部温度点开展试验测量研究。结果表明:550kV电容干式油气套管温度最高点位于中心导杆附近其值约为95℃;在材料非线性条件下得到套管径向温度值低于线性条件下的计算结果;额定载流量下套管芯体热击穿电压值为538kV,高于套管最高工作相电压。 Due to the direct impact of temperature distribution of 550kV resin impregnated paper (RIP) oil-gas bushing condensers on the long-term secure and stable operation of the bushings, the radial temperature distribution within the bushing condenser must be researched for the trial-manufacture of the prototype of RIP oil-gas condenser bushing. By means of establishing an electro-thermal coupling model of the bushing condenser, the radial temperature distribution law of the bushing condenser under linear material condition is derived; then applying finite element model of electro-thermal coupling the established theoretical model of radial temperature distribution is extended to the nonlinear material condition; finally experimental haeasurement of local temperature points of bushing condenser is performed. Measured results show that the highest temperature of 550kV RIP oil-gas bushing appears near center conductor and the temperature is about 95 ~C; the calculated radial temperature of the bushing under nonlinear material condition is lower than that under linear material condition; the thermal breakdown voltage of bushing condenser under rated current is 538kV, which is higher than the maximum operation phase voltage of the bushing.
出处 《电网技术》 EI CSCD 北大核心 2012年第12期289-296,共8页 Power System Technology
基金 国家电网公司科技项目(SG0924 SG11006)~~
关键词 550kV电容干式油气套管 电热耦合 有限元 热击穿电压 非线性 550 kV RIP oil-gas bushings electro-thermal coupling finite element method thermal breakdown voltage nonlinear
  • 相关文献

参考文献19

  • 1Zhang S B. Evaluation of thermal transient and overload capability of high-voltage bushings with ATP[J]. IEEE Transactions on Power Delivery, 2009, 24(3): 1295-1301.
  • 2Raft V, Daniels M G. Considerations for thermal stability of oil impregnated EHV condenser bushings[J]. IEEE Transaction on powerapparatus and systems, 1985, 104(1): 200-206.
  • 3Jyothi N S, Ramu T S, Mandlik M. Temperature distribution in resin impregnated paper insulation for transformer bushing[J]. IEEE Transaction on Dielectrics and Electrical Insulation, 2010, 17(3).. 931-938.
  • 4谢恒垫.电气绝缘结构设计原理:下册[M].北京:机械工业出版社,1992:88-108.
  • 5Clemens M, Gjonaj E, Pinder P, et al. Numerical simulation of coupled transient thermal and electromagnetic fields with the finite integration method[J]. IEEE Transactions on Magnetics, 2000, 36(4).. 1448-1452.
  • 6郑利兵,韩立,刘钧,温旭辉.基于三维热电耦合有限元模型的IGBT失效形式温度特性研究[J].电工技术学报,2011,26(7):242-246. 被引量:40
  • 7苏秀苹,陆俭国,刘帼巾,常伟.小型直流电磁继电器温度场仿真分析[J].电工技术学报,2011,26(8):185-189. 被引量:31
  • 8Chakradhar-Reddy C, Ramu T S. Estimation of thermal breakdown voltage of HVDC cables-A theoretical framework[J]. IEEE Transaction on Dielectrics and Electrical Insulation, 2007, 14(2): 400-408.
  • 9雷鸣,刘刚,邱景生,赖育庭,刘毅刚,简淦杨.单芯电缆线芯温度的非线性有限元法实时计算[J].电网技术,2011,35(11):163-168. 被引量:28
  • 10Han S J, Zou J, Gu S Q, et al. Calculation of the potential distribution of high voltage metal oxide an'ester by using an improved semi-analytic finite element method[J]. IEEE Transactions on Magnetics, 2005, 41(5): 1392-1395.

二级参考文献157

共引文献265

同被引文献93

引证文献10

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部