期刊文献+

流域系统优化调控的新模型与应用 被引量:6

A new model for optimal watershed system regulation and its application
原文传递
导出
摘要 流域系统具有复合性和非线性特征,其机理过程的数值描述本身也存在随机和认知不确定性.在此前提下,如何优化调控流域系统,实现水质改善和水生态系统健康成为当前水资源、水环境及水生态领域亟待解决的突出问题.本文提出了贝叶斯递归回归树模型和区间不确定性的风险决策分析方法,与强化区间线性规划结合形成了新的不确定性"模拟-优化"间接耦合模型,实现流域系统优化调控及风险决策方案.上述方法将应用于美国佛杰尼亚州Chesterfield县Swift Creek水库营养盐TMDL分配方案,确定8个子流域的最小负荷分配以实现叶绿素a浓度达标.结果表明该耦合模型既能表征流域系统特征,也能兼顾不确定性模拟的准确度、计算效率以及不确定性优化与风险决策的解空间全局最优性、绝对可行性,为流域系统优化调控及其未来非线性系统的预测与最优控制提供了新的计算工具. Watershed systems are complex and nonlinear,and stochastic and cognitive uncertainties exist in the numerical description of their scheme.In this context,optimizing watershed systems for improving water quality and ecological health is essential for integrated watershed management.To support watershed system regulation and its risk-based decision-making,Bayesian Recursive Regression Tree model (BRRT) and risk-based decision-making analysis under interval-uncertainty were proposed,which coupled with Enhanced-Interval Linear Programming (EILP) formed a new indirect coupled "simulation-optimization" model.The proposed approach was applied to the Swift Creek Reservoir's nutrient TMDL allocation (Chesterfield County,VA) to identify the minimum nutrient load allocations required from eight sub-watersheds to ensure compliance with user-specified chlorophyll-a criteria.The results indicated that the proposed model is able to represent watershed system characteristics;more importantly,it improves the prediction accuracy,computational efficiency of process simulation as well as global optimality and absolute feasibility of optimization algorithm.This model could be applied for forecast and optimal controls of the analogous nonlinear systems.
出处 《环境科学学报》 CAS CSCD 北大核心 2012年第12期3108-3118,共11页 Acta Scientiae Circumstantiae
基金 国家水体污染控制与治理科技重大专项(No.2008ZX07102-006,2012ZX07503-002)~~
关键词 模拟优化问题 决策树 不确定性优化 最大日负荷量 流域过程 藻类动力学 Simulation-optimization decision tree optimization under uncertainty total maximum daily load (TMDL) watershed process algea dynamics
  • 相关文献

参考文献26

  • 1Bellman R E, Zadeh L A. 1970. Decision-making in a Fuzzy Environment [ J ], Decision-making in a Fuzzy Environment, 17 (4) : 141-164.
  • 2Birge J R, Louveaux F. 1997. Introduction to Stochastic Programming [ M]. New York: Springer Verlag.
  • 3Box G E P, Wilson K B. 1951. On the experimental attainment of optimum conditions [J]. Journal of the Royal Statistical Society (Series B: Methodological) , 13(1) : 1-45.
  • 4Breiman L. 1984. Classification and Regression Trees[ M ]. New York: Wadsworth International Group.
  • 5Burn D H, Yulianti J S. 2001. Waste-load allocation using genetic algorithms [J]. Journal of Water Resources Planning and Management, 127(2): 121-129.
  • 6Charnes A, Cooper W W. 1959. Chance-constrained programming [ J]. Management Science, 73-79.
  • 7Chipman H A, George E I, Mcculloch R E. 1998. Bayesian CART model search [ J l. Journal of the American Statistical Association, 935 -948.
  • 8Chipman H A, George E I, Meculloch R E. 2002. Bayesian treed models [J]. Machine Learning, dS(1 ) : 299-320.
  • 9Chipman H A, George E I, Mcculloch R E. 2010. BART: Bayesian additive regression trees [J]. The Annals of Applied Statistics, 4 ( 1 ) : 266-298.
  • 10CH2MHILL. 2000. Watershed Management Master Plan and Maintenance Program for the Swift Creek Reservoir Watershed [ R ]. Chesterfield County, Virginia, Chesterfield, VA: Department of Environmental Engineering of Chesterfield County.

同被引文献87

引证文献6

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部