期刊文献+

基于Mean Shift和粒子滤波的运动目标跟踪 被引量:2

Moving target tracking based on Mean Shift and Particle Filter
下载PDF
导出
摘要 针对Mean Shift算法跟踪效果不佳以及粒子滤波算法计算量大且实时性不强等问题,提出了一种结合Mean Shift和粒子滤波的运动目标跟踪融合算法。首先用MeanShift算法进行跟踪,在跟踪结果不佳的情况下用粒子滤波算法进行修正。实验结果表明,融合算法很好地结合了两种算法的优点,既保留了Mean Shift算法的实时性,又很好地体现了粒子滤波算法的鲁棒性,实用性很强。 The effect of Mean Shift tracking algorithm is not good and particle filter algorithm has a large amount of calculation and its real time is also not good. This paper puts forward a movement target tracking fusion algorithm combined with Mean shift and particle filter. At first, tracking with the Mean Shift algorithm, if the tracking result is not good, then using the particle filter algorithm to fix. The experimental results show that the fusion algorithm combines the two algorithm advantages well, keeps Mean Shift algorithm of real-time, and embodies the particle filter algorithm's robust well, the usability is very strong.
出处 《微型机与应用》 2012年第23期42-44,共3页 Microcomputer & Its Applications
关键词 算法融合 均值漂移 粒子滤波 运动目标跟踪 algorithm fusion mean shift particle filter moving target tracking
  • 相关文献

参考文献9

  • 1COMANICIU D, RAMESH V, MEER P. Kernel-based object tracking [J]. IEEE Transactions Pattern Analysis and Machine Intelligence, 2003,25(5) :550-585.
  • 2YILMAZ A,JAVED O, SHAH M. Object tracking: a survey[J]. ACM Computer Surveys, 2006,38(4) :23-67.
  • 3COMANICIU D, RAMESH V, MEER P, Real-time tracking of non-rigid objects using Mean Shift[C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2000,2: 140-149.
  • 4孙剑,周凤岐,周军.基于mean-shift的快速跟踪算法设计与实现[J].计算机工程,2006,32(15):37-38. 被引量:9
  • 5Cheng Yizong. Mean-shift, mode seeking and clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 780-799.
  • 6NUMMIARO K, KOLLER M E, VAN G L. A color-based particle filter. Proceedings of the 1st Workshop on Generative-Model-Based Vision, 2002:43-65.
  • 7ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non- gaussian bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002,50 (2) : 154-188.
  • 8COMANICIU D, MEER P. Mean shift: a robust approach toward feature space analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002(24):603-619.
  • 9马丽,常发亮,乔谊正.基于均值漂移算法和粒子滤波算法的目标跟踪[J].模式识别与人工智能,2006,19(6):787-793. 被引量:20

二级参考文献18

  • 1Dorin C,Peter M.Robust Analysis of Feature Spaces:Color Image Segmentation[C].Proc.of IEEE Conf.on Comp.Vis.and Pattern Recognition,Puerto Rico,1997:750-755.
  • 2Dorin C,Peter M.Mean Shift:A Robust Approach Toward Feature Space Analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
  • 3Dorin C,Visvanathan R,Peter M.Real-time Tracking of Non-rigid Objects Using Mean Shift[C].Proc.of IEEE Conf.Computer Vision and Pattern Recognition,2000:142-149.
  • 4Fukunaga K,Hostetler L D.The Estimation of the Gradient of a Density Function,with Applications in Pattern Recognition[J].IEEE Trans.Info.Theory,1975,IT-21(1):32-40.
  • 5张清.视频网络中目标跟踪技术研究[D].西安:西北工业大学,2005.
  • 6Comaniciu D, Ramesh V, Meer P. Real-Time Tracking of Non- Rigid Objects Using Mean Shift// Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, USA, 2000:142-149
  • 7Comaniciu D, Ramesh V, Meer P. Kernel-Based Object Tracking. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577
  • 8Cheng Y Z. Mean Shift, Mode Seeking, and Clustering. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995, 17 (8): 790-799
  • 9Bradski G R. Computer Vision Face Tracking for Use in a Perceptual User Interface. Intel Technology Journal, 1998, 2(2) : 1-15
  • 10Nummiaro K, Koller-Meier L, van Good L. An Adaptive Color- Based Particle Filter. Image Vision Computing, 2003, 21 (1) : 99-110

共引文献27

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部