期刊文献+

基于证据理论的共因失效因子不确定性分析 被引量:1

Uncertainty analysis of common cause factor using the evidence theory
原文传递
导出
摘要 安全仪表系统常通过计算其平均要求时失效概率(PFD(avg))来验证其是否满足目标安全完整性水平。计算PFD(avg)的众多参数中,共因失效因子β的变化对输出结果的影响是最大的。然而,由于共因失效的复杂性,β的估算十分困难。标准IEC61508中通过专家对一系列问题的评分来估算β,却没有考虑评分本身存在的不确定性以及多专家评分的影响,难以得到十分可信的β。针对以上问题,本文提出一种基于证据理论的β因子不确定性分析方法,以解决专家评分不确定性和多专家评分融合的问题。此方法将专家、专家评分和得分区间分别视为证据理论中的证据源、证据和焦元,并定义了焦元的权值(WFE)概念,最后将各焦元权值与对应的基本β值相乘后求总和得到新的考虑了不确定性的β。文章最后通过实例验证了方法的实用性和可行性,并且由分析知增加证据源会改变融合结果的不确定度,并且融合结果的不确定度与证据间总的冲突程度成正比。 Average probability of failure on demand always used in safety instrumented system to verify that the design achieves the target safety integrity level. Common cause factor, among the numerous parameters used to calculate PFDavg, leads to the greatest impact of result. However, the calculation offl is rather difficult due to the complexity of common cause failure. An expert scoring approach is introduced in IEC 61508 to estimate the value of/?. But this approach cannot achieve the reliable value offl since the uncertainty of scoring process and the fusion of multi-expert scoring are not considered. In order to solve the above problems, a new method based on the evidence theory is proposed to analysis the uncertainty of/? in this paper. Experts, scores and score intervals are regarded as evidence source, evidence and focus elements in evidence theory, respectively. The concept of weight of focus element (WFE) is defined in this paper and the final/? can be calculated as the summation of product of each focus element's WFE and its corresponding interval basic/?. At the end of this paper, an example is studies to prove the validity of this method. A conclusion that the uncertainty of result is proportional to the total conflict degree of evidence is also achieved by this numerical example.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2012年第11期1339-1342,共4页 Computers and Applied Chemistry
关键词 共因失效因子 证据理论 不确定性 common cause factor, evidence theory, uncertainty
  • 相关文献

参考文献8

  • 1Bukowski J V. A comparison of techniques for computing PFD average. Proceedings of the Annual Reliability and Maintainability Symposium. Alexandria, VA: IEEE Press, 2005:590-595.
  • 2IEC 61508 functional safety of electrical/electronic/programmable electronic safety -related systems. 2002.
  • 3Sentz K. Combination of evidence in Dempster-Shafer Theory: Binghamton:Binghamton University, 2002.
  • 4Zadeh L A. Review of books: a mathematical theory of evidence. The AI Malzazine, 1984. 5(3):81-83.
  • 5周华,左信,郑加平.安全仪表系统可靠性影响参数的敏感性分析[J].化工自动化及仪表,2010,37(3):66-68. 被引量:6
  • 6李禾,马静娴.不确定性分析在概率安全评价中的应用[J].核动力工程,2002,23(4):71-74. 被引量:11
  • 7张斌,阳宪惠,康荣学.共因失效对PFDavg不确定性的影响分析[A].第二十七届中国控制会议论文集,2008.
  • 8肖明珠,陈光.一种改进的证据合成公式[J].数据采集与处理,2004,19(4):467-469. 被引量:11

二级参考文献12

  • 1International Electrotechnical Commission ( IEC ). IEC61508-5, Functional Safety of Electrical/ Electronic/ Programmable E- lectronic Safety-Related Systems - Part 5 : Examples of Methods for the Determination of Safety Integrity Levels [ S ]. Switzerland. IEC, 1998,12.
  • 2BSI. British Standard IEC61511, Functional Safety-Safety Instrumented Systems for the Process Industry Sector [ S ]. The Standards Policy and Strategy Committee,2003,12.
  • 3HOUTERMANS M J M, ROUVROYE J L. The Influence of Design Parameters on The Performance of Safety-Related Sys- tems[ C ]//International Conference on Safety, IRRST. Montreal, Canada, 1999.
  • 4GOBLE W M. Control Systems Safety Evaluation and Reliability [M]. The United States of America:ISA,1998.
  • 5野中保雄 高金钟(译).可靠性数据的收集与分析方法[M].北京:机械工业出版社,1988.23.
  • 6Shafer G. A mathematical theory of evidence[M].Princeton U P, Princetion, 1976.
  • 7Yager R R. On the D-S framework and new combination rules [J]. Information Sciences, 1987, 41(2) :93~138.
  • 8向阳,史习智.证据理论合成规则的一点修正[J].上海交通大学学报,1999,33(3):357-360. 被引量:63
  • 9孙全,叶秀清,顾伟康.一种新的基于证据理论的合成公式[J].电子学报,2000,28(8):116-119. 被引量:442
  • 10朱大奇,于盛林.基于D-S证据理论的数据融合算法及其在电路故障诊断中的应用[J].电子学报,2002,30(2):221-223. 被引量:129

共引文献25

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部