摘要
翻译推导的切分歧义是统计机器翻译面临的一个很重要的问题,而在层次短语机器翻译中,其尤为突出.提出了一个层次切分模型来处理推导的切分歧义性.采用Markov随机场构建模型,然后将其融入层次短语翻译模型,以便自动选择更合理的切分.在NIST中英翻译的任务中,该模型的训练效率高,通过NIST05,NIST06和NIST08这3个测试集上的翻译效果表明,该模型提高了层次短语翻译的性能.
The partition ambiguity of translation derivations is an important problem suffered by the statistical machine translation, and it is much more important in a hierarchical phrase-based machine translation. In the paper, a hierarchical partition model is proposed to address the problem. The study applies markov random fields to construct the model, and integrate it into the hierarchical translation model to automatically select the more reasonable partition. In the NIST Chinese-English translation tasks, the optimization of the model is very efficient, and it improves the translation performance for hierarchical phrase-based translation on NIST05, NIST06 and NIST08 test sets.
出处
《软件学报》
EI
CSCD
北大核心
2012年第12期3088-3100,共13页
Journal of Software
基金
国家自然科学基金(60736014
61173073
61100093)
国家高技术研究发展计划(863)(2011AA01A207)
关键词
层次短语翻译
切分模型
图模型
MARKOV随机场
依存树
hierarchical phrase translation
partition model
graphical model
Markov random fields
dependency tree