期刊文献+

碳源对微生物硝酸盐异化还原成铵过程的影响 被引量:11

Effect of Carbon on Dissimilatory Nitrate Reduction to Ammonium Process
下载PDF
导出
摘要 微生物通过异化性硝酸盐还原成铵(DNRA)途径,硝态氮转化为仍可生物再利用的铵盐。以琥珀酸钠、柠檬酸钠、酒石酸钾钠为碳源,研究碳源的差异对有氧条件下微生物通过DNRA途径产铵的影响。结果显示,以琥珀酸钠和柠檬酸钠为碳源,初始浓度为20 mmol/L是较佳的实验条件,此时C/N约为1.5~2.0,NH4+-N质量浓度30.0~45.0 mg/L,最高产铵率分别为29.9%和27.0%;以酒石酸钾钠为碳源则在初始浓度为30 mmol/L,C/N约为2.0,NH4+-N质量浓度为40.0~45.0 mg/L时,最高产铵率为30.7%。反硝化和DNRA过程是同时存在的,培养液中NO3--N浓度的下降伴随着中间产物NO2--N的积累和NH4+-N浓度的升高。 Nitrate nitrogen can be transformed to biological reused ammonium in the way of Dissimilatory Nitrate Reduction to Ammonium(DNRA) by animalcule.These three different carbon sources that sodium succinate,sodium potassium tartrate and trisodium citrate affecting DNRA under aerobic environment have been studied in this experiment.Results show that the better initial concentration of sodium succinate and trisodium citrate should be 20 mmol/L(C/N 1.5-2.0),on this condition,ammonium concentration rang among 30.0-45.0 mg/L and the rates of ammonium production respectively are 29.9% and 27.0%;but the better initial concentration of sodium potassium tartrate should be 30 mmol/L(C/N 2.0),ammonium concentration changes between 40.0-45.0 mg/L and the rates of ammonium production is 30.7%.Denitrification and DNRA are coexisted and nitrate concentration decreases always accompanied with the increase of nitrite and ammonium concentration.
出处 《工业安全与环保》 北大核心 2012年第9期4-7,14,共5页 Industrial Safety and Environmental Protection
基金 珠江水利委员会珠江水利科学研究院开放研究基金资助课题[2010]KJ05 水利部公益性行业科研专项项目"珠江水质生物监测与评价技术" 工业聚集区污染控制与生态修复教育部重点实验室2011年度开放基金资助(项目编号:10) 2010年粤港关键领域重点突破招标项目 广东省经济和信息化委员会(20100106-3) 广东省科技厅(2011B010100029)
关键词 硝酸盐异化还原成铵(DNRA) 碳源 氨氮 dissimilatory nitrate reduction to ammonium(DNRA) carbon sources ammonium
  • 相关文献

参考文献13

  • 1Raina M Maier,lan L Pepper,Charles P Gerba.环境微生物学(下册)[M].北京:科学出版社,2004.536-543.
  • 2刘佳,李大平,刘强,陶勇,何晓红,王晓梅,高平,陈元芬,胡吉军.一株好氧DNRA细菌的分离鉴定及其诱导的生物矿化[J].四川大学学报(自然科学版),2008,45(3):651-655. 被引量:9
  • 3Donald Devereux Woods. The reduction of nitrate to ammonium by Closrridium welehli[J]. Biochem J, 1938, 32 (11):2000- 2012.
  • 4殷士学,沈其荣.缺氧土壤中硝态氮还原菌的生理生化特征[J].土壤学报,2003,40(4):624-630. 被引量:21
  • 5Beverley H L Kelso, Roger V Smith, Ronald J Laughlin, et al. Dissimilatory nitrate reduction in anaerobic sediments leading to river nitrite accumulation [ J ]. FEMS Microbiology Ecology, 1997,63(12) :4679 - 4685.
  • 6Gruca- Rokosz R, Tomaszek J A, Koszelnnik P. Competitiveness of dissimilatory nitrate reduction processes in bottom sediment of Rzesz6w reservoir[J]. Environ Pro Eng,2009,35(2) :5 - 14.
  • 7李慧颖,黄少斌,范利荣.一株好氧反硝化菌的反硝化性能研究[J].环境科学与技术,2009,32(8):9-12. 被引量:22
  • 8龙雯,陈存社,汪萍,翟茜.一株好氧反硝化细菌的分离与鉴定[J].中国酿造,2006,25(8):28-30. 被引量:19
  • 9Hongbo Ma and C Marjorie Adion.Ammonium production during microbial nitrate removal in soll microcosms from a developing marsh estuary [ J ]. Soil Biology &Bioehemistry, 2005, 37 (10) : 1869-1878.
  • 10S X Yin, D Chen, L M Chen, et al. I)issimilatory nitrate reduction to ammonium and responsible microorganisms in two Chinese and Australian paddy soils [ J ]. Soil Biology & Biochemistry, 21-Y2,34(8):1131- 1137.

二级参考文献70

共引文献73

同被引文献215

引证文献11

二级引证文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部