期刊文献+

基于核自组织映射与图论的图像分割方法 被引量:1

Image segmentation based on kernel self-organizing mapping and graph theory
原文传递
导出
摘要 为了对以特征聚类为基础的图像分割方法进行目标优化并提高分割性能,提出了一种核自组织映射与EGB(efficient graph-based)算法相结合的自适应分割方法。将依据信息理论推导出的核自组织映射应用于图像分割,使得图像经映射聚类后,同一分类内像素的相似度最高且信息熵最大,不同分类间的互信息最小,从而得到最符合图像分割目标的聚类效果。将聚类得到的区域进一步用改进的EGB算法自适应地进行合并,既充分结合了像素的空间特性,又能克服EGB算法的不足,可获得非常准确的分割结果。在综合分析多种图像分割评价方法的基础上,选取了一些量化指标对分割结果进行客观评价。实验及分析结果表明,本文的分割方法准确可靠,其图像分割结果的量化评价指标明显优于EDISON方法。 In order to optimize the objective functions of the image segmentation methods based on feature clustering and improve their performance, an adaptive segmentation method combining kernel self-organizing mapping and efficient graph-based (EGB) algorithm is proposed. In our approach, the kernel-based topographic mapping derived from information theory is applied to optimize the objectives of segmentation. When using this topographic mapping to cluster the image, the similarity of pixels within the same cluster and the differential entropy of each cluster are maximized,and the mutual information between different clusters is minimized. This leads to the best image clustering. According to the clustering results, the image is further merged by the improved EGB algorithm adaptively. This helps to make full use of the image's spatial information and avoid the shortcoming of the algorithm. On the basis of comprehensive analysis of a variety of segmentation evaluation methods, we select some quantitative evaluations to judge the performance of our method objectively. Experimental and analytical results show that our method is accurate and reliable,and its quantitative evaluation results are superior to those of the EDISON method.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2012年第12期2404-2409,共6页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61177018) 教育部新世纪优秀人才计划(NECT-11-0596)资助项目
关键词 图像分割 自组织映射 核方法 EGB(efficient graph—based)算法 image segmentation self-organizing mapping kernel method efficient graph-based (EGB)algorithm
  • 相关文献

参考文献2

二级参考文献13

共引文献16

同被引文献14

  • 1Wright J,Yang A Y,Ganesh A,et al. Robust face recogni- tion via sparse representation[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2009.31 ( 2 ) : 210-227.
  • 2Engan K, Aase S O, Husoy H J. Method of optimal direc- tions for frame design [A]. Proc. of IEEE Int. Conf.Acoust., Speech, Signal Process[C]. 1999. 5; 2.113- 2446.
  • 3Aharon M, Elad M, Bruckstein M A. The k-svd: an algorit- hm for designing of overcomplete dictionaries for sparse representation[J]. IEEE Trans. Signal Process, 2006.54 ( 11) ,4311-4322.
  • 4Yang M. Zhang L, Feng X, et al. Fisher discrimin- ation dictionary learning for sparse representat- ion[A]. Proc. of Computer Vision(IOOV), 2011 IEEE Int- ernational Conference on. IEEE[C]. 2011.543-550.
  • 5Scholkopf B,Smola A.Muller K R. Nonlinear co- mponent analysis as a kernel eigenvalue problem[J]. Neural Com- putation, 1998,10(5):1299-1319.
  • 6Mike So Ratsch G, Scholkopf B, et al. Fisher discriminant analysis with kernels[A]. Proc. of the 1999 IEEE Signal Processing Society Workshop Neural Networks for Signal Processing[C]. 1999, IX: 41-48.
  • 7Lu J W,Plataniotis K N,Venetsanopoulos A N. Face rec- ognition using kernel direct discriminant analysis algo- rithms[J]. IEEE Transactions on Neural Networks, 2003, 14(1) : 117-126.
  • 8Gao S,Tsang I,Chia L T. Sparse representation with ker- nels[J]. IEEE Transactions on Image Processing, 2013,22 (2) :423-434.
  • 9Rosasco L, Verri A. Iterative projection metho- ds for structured sparsity regularization[J]. 2009.
  • 10Yang M, Zhang L, Yang J, et al Metaface learning for sparse representation based face recognition[A]. Proc of Image Processing (ICIP),2010 17th IEEE International Conference on IEEE[C]. 2010,1601-1604.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部