期刊文献+

一种利用自组织映射和径向基函数神经网络的网络拥塞预测方法 被引量:3

A Mathod of Network Blocking Forecasting about Kohonen Self-Organizing Maps and Radial Basis Function Network
下载PDF
导出
摘要 文中提出了一种利用自组织映射(KSOM)和径向基函数(KR)神经网络进行网络拥塞预测的方法.目前的研究表明,预测网络拥塞还存在一些问题,尤其在数据集比较小的时候.因此,为了使网络拥塞问题预测精度高,在预测过程中有必要考虑原有的数据集中每个数据之间的关系.现在为了获得更多的有价值的位置信息,采取了一系列的措施去满足不同数据的情况,包括使用自组织映射神经网络和径向基函数神经网络算法.这一过程使网络能满足不同类型的数据.在本文网络拥塞预测中,采用同一原始数据集,分别对利用自组织映射和径向基函数神经网络的算法和另外两种算法的性能进行比较.实验结果表明,利用自组织映射和径向基函数神经网络的算法具有更好的效果. We propose an adaptive Kohonen Self-Organizing Maps and Radial Basis Function Network-based method (KR) for network blocking forecasting in the paper. It shows that there are some problems in the network blocking forecasting now, especially when the data set is just small. Therefore, for achieving high accuracy in the network blocking forecasting, it is necessary to consider the relationships between each data within the original data set in the forecasting process. Now to get more valuable position information, a series of processes including Kohonen neural network and RBF network is proposed to meet the types of different data. The process makes the network can meet the different kinds of data. In this application to a city's network blocking forecasting, we investigate KR's and two other algorithms performance on a original data set. The comparison of experimental results shows that KR is better location performance than others.
出处 《微电子学与计算机》 CSCD 北大核心 2012年第12期176-179,共4页 Microelectronics & Computer
基金 国家自然科学基金项目(60973051 60875081)
关键词 网络拥塞预测 自组映射 径向基函数 network blocking forecasting kohonen self-organizing maps radial basis function
  • 相关文献

参考文献9

  • 1Gonzalez M C, Hidalgo C A, Barabasi A L. Understanding individual human mobility patterns [J]. Nature, 2008,453(7196) : 779-782.
  • 2El Barachi, Glitho M, Dssouli R. Control-level call differentiation in IMS-based 3G core networks [J]. Network, IEEE, 2011, 25 (1): 20-28.
  • 3Paul, U, Subramanian, A. P, Buddhikot, M. M, Das, S.R. Understanding traffic dynamics in cellular data networks[J]. INFOCOM, 2011 Proceedings IEEE, 2011, 4(10-15) : 882-890.
  • 4王建平,郭尚.BP神经网络预测算法性能的改进策略[J].微电子学与计算机,2007,24(10):144-145. 被引量:5
  • 5王晓敏,刘希玉,戴芬.BP神经网络预测算法的改进及应用[J].计算机技术与发展,2009,19(11):64-67. 被引量:17
  • 6Staley, Justin. Neural networks[J]. Proceedings of the International Joint Conference on Neural Networks, 1999(6):4432-4434.
  • 7DTREG Software For Predictive Modeling and Forecasting), RBF Neural Networks[EB/OL]. [2012-02-08]. http://www. dtreg. com/rbf. htm.
  • 8Miklos Hoffmann. Numerical control of Kohonen neural network for scattered data approximation[J]. Numerical Algorithms ,2005(39): 175-186.
  • 9Kumar, Swagat , Behera, Laxmidhar: McGinnity, T. M. Kinematic control of a redundant manipulator using an inverse-forward adaptive scheme with a KSOM based hint generator[J]. Robotics and Autonomous Systems, 2010,58(5):622-633.

二级参考文献12

共引文献19

同被引文献46

  • 1谭建辉.径向基函数神经网络的再学习算法及其应用[J].微电子学与计算机,2006,23(5):115-117. 被引量:4
  • 2吴柯,方强,张俊玲,翁涛.基于改进Kohonen神经网络的遥感影像分类[J].测绘信息与工程,2007,32(2):47-49. 被引量:6
  • 3Jain R,Ramakrishnan K K,Chiu Dah-Ming. Congestion Avoidance in Computer Networks with a Connectionless Network Layer [ R ]. Digital Equipment Corporation DEC-TR-506,1988.
  • 4范·雅各布森.拥塞避免和控制[C]//美国计算机协会数据通信专业组会议,菱国:ACM,1988i512-528.
  • 5Duda R O, Hart P E. Pattern Classification and Scene Analysis[M]. New York: Wiley, 1973.
  • 6Poggio T, Girosi F. A Theory of Networks for Approximation and I.earning [M]. Massachusetts: Artificial Intelligence Lahoratory and Center for Biological Information Processing and Whitaker College, Massachusetts Institute of Technology, 1989:11-45.
  • 7Powell M J D. Radial basis functions for multivariate interpolation: A review [M] //Algorithms for the Approximation of Functions and Data. New York: Clarendon Press, 1987:143-167.
  • 8Bhowmik P S, Pradhan S, Prakash M, et al. Investigation of wavelets and radial basis function neural network for incipient fault diagnosis in induction motors [C] //Proc of the 3rd IEEE CCUBES. Los Alamitos, CA: IEEE Computer Society, 2013:27-28.
  • 9Alexandridis A, Chondrodima E, Sarimveis H. Radial basis function network traioing using a nonaymmetric partition of the input space and particle swarm optimization [J]. IEEE Trans on Neural Networks and Learning Systems, 2013, 24 (2) : 219-230.
  • 10Manning T, Walsh P. Improving the performance of cgpann for breast cancer diagnosis using crossover and radial basis functions [G] //LNCS 7833: Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. Berlin: Springer, 2013:165-176.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部