期刊文献+

一种新型的多目标优化混合量子进化算法 被引量:3

Multi-objective optimization based on novel hybrid quantum-inspired evolutionary algorithm
下载PDF
导出
摘要 针对复杂多目标优化问题,提出一种混合量子进化算法,并利用它求解多目标函数优化问题。该算法根据多目标优化的特点,创建外部集合保存历代搜索到的非支配解,利用其中的精英个体设计了一种旋转角自适应调整的量子门更新策略,并对量子比特表示的概率幅设置最大和最小阈值,以防止量子群体早熟收敛。借鉴量子门引入了专门针对量子个体的旋转交叉算子,同时小概率地对量子比特进行取反变异操作。对所提算法的计算复杂度进行了理论分析。与另一种已有的多目标量子进化算法的比较结果表明,所提算法具有更好的收敛性能、分布特性及求解效率。 This paper proposed a hybrid quantum-inspired evolutionary algorithm for complex multi-objective optimization problems,and it used to solve multi-objective function optimization problems.In consideration of the characteristics of multi-objective optimization,it used an external set to reserve the non-dominated solutions found so far.Making use of the eltism solutions in it,it gave a self-adaptive method for tuning the rotation angle in the quantum gate.Meanwhile,it set the maximum and minimum threshold values for the possibility amplitude represented by the quantum bits,which was to prevent premature convergence.It introduced a rotation crossover operator specially designed for the quantum individual according to the quantum gate.And it adopted a not-operation to mutate the quantum individual with a small possibility.It analyzed the computational complexity of the algorithm theoretically.Comparisons with another existed multi-objective quantum evolutionary algorithm indicate that the proposed algorithm has better performance of convergence,distribution and efficiency.
作者 申晓宁
出处 《计算机应用研究》 CSCD 北大核心 2012年第12期4441-4444,4447,共5页 Application Research of Computers
基金 江苏省高校自然科学研究计划项目(10KJB510010) 空间智能控制技术国家重点实验室资助项目 南京信息工程大学科研基金资助项目(20110393 20090211)
关键词 多目标优化 量子进化算法 量子门 旋转角 交叉 multi-objective optimization quantum-inspired evolutionary algorithms(QEA) quantum gate rotation angle crossover
  • 相关文献

参考文献10

  • 1DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm : NSGA-Ⅱ [ J ]. IEEE Trans on Evolutionary Computation,2002,6(2) :182-197.
  • 2ZITZLER E, LAUMANNS M, THIELE L. SPEA2 : improving the strength Pareto evolutionary algorithm [ C ]//Proc of Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems. Athens : IEEE Press, 2002:95-100.
  • 3ARPAIA P, MAISTO D, MANNA C. A quantum-inspired evolutionary algorithm with a competitive variation operator for multiple-fault diagnosis [ J ]. Applied Soft Computing,2011,11 ( 8 ) :4655-4666.
  • 4HAN K, KIM J. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization [ J]. IEEE Trans on Evolutionary Computation ,2002,6(6) :580-593.
  • 5钱洁,郑建国,张超群,王翔,阎瑞霞.量子进化算法研究现状综述[J].控制与决策,2011,26(3):321-326. 被引量:30
  • 6KIM Y, KIM J H, HANK H. Quantum-inspired muhiobjective evolutionary algorithm for multiobjective 0/1 knapsack problemS[ C]//Proc of IEEE Congress on Evolutionary Computation. Vancouver: IEEE Press,2006 : 2601 - 2606.
  • 7LI Zhi-yong, RUDOLPH G, LI Ken-li. Convergence performance comparison of quantum-inspired multi-objective evolutionary algorithms [ J]. Computers and Mathematics with Applications, 2009,57 ( 11-12 ) : 1843-1854.
  • 8杨海东,杨春.求解多目标优化问题的分级变异量子进化算法[J].控制与决策,2009,24(6):894-898. 被引量:3
  • 9ZITZLER E, DEB K, THIELE L. Comparison of muhiobjective evolutionary algorithms : empirical results [ J ]. Evolutionary Computation, 2000,8 ( 2 ) : 173-195.
  • 10COELLO C A, SIERRA M R. A coevolutionary multi-objective evolutionary algorithm[ C ]//Proc of IEEE Congress on Evolutionary Computation. 2003 : 482 - 489.

二级参考文献24

共引文献31

同被引文献19

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部