期刊文献+

基于蛋白质网络的模块动态特性挖掘研究 被引量:1

Analyzing dynamic properties of modules in PPI network
下载PDF
导出
摘要 目前对于蛋白质网络的多数分析方法都是基于静态网络框架提出的,然而,事实上蛋白质之间的相互作用关系是随着时间变化的,具有明显的动态特性。从动态角度出发,基于蛋白质交互网络,结合时间序列的基因表达数据,揭示蛋白质功能模块变化的动态特性,提出了一种动态网络的构建方法及在动态快照网络中挖掘功能模块的算法,采用模糊匹配的方法揭示了蛋白质功能模块的变化过程。实验证明,该方法能够有效地揭示蛋白质功能模块的动态变化特性。 Although many methods were proposed to analyze PPI network in past years,most of them are based on static network analysis framework.However,the PPI network is dynamic changing in living organisms.This paper analyzed the dynamic properties of modules in PPI network.Based on the time-series gene expression,it constructed the dynamic PPI snapshots and proposed a novel algorithm to mine functional modules in the snapshot networks.Thus,it adopted a fuzzy matching method to reveal the dynamic properties of modules.Experimental results illustrate the proposed method is helpful to analyze the dynamic properties of modules in PPI network.
出处 《计算机应用研究》 CSCD 北大核心 2012年第12期4495-4499,共5页 Application Research of Computers
基金 国家"973"计划资助项目(2012CB316203) 国家自然科学基金资助项目(61033007) 西北工业大学基础研究资助项目(JC201042)
关键词 蛋白质网络 局部相关性 功能模块 动态特性 PPI network local similarity functional module dynamic property
  • 相关文献

参考文献12

  • 1JIN Ruo-ming, McCALLEN S, LIU Chun-chi, et al. Identifying dynamic network module with temporal and spatial constraints [ C ]//Proc of Pacific Symposium on Biocomputing. 2009:203-214.
  • 2YOU Chang-hun, HOLDER L B, COOK D J. Learning patterns in the dynamics of biological networks [ C ]//Proc of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York : ACM Press ,2009:977-986.
  • 3ROHIAN H, AN Ai-jun, ZHAO Jia-shu, et al. Discovering temporal associations among significant changes in gene expression [C ]//Proc of IEEE International Conference on Bioinformaties and Biomedicine. Washington DC : IEEE Computer Society,2009:419-423.
  • 4RUAN Quan-song, DUTrA D, SCHWALBACH M S, et al. Local similarity analysis reveals unique associations among marine bacterioplankton species and environmental factors [ J ]. Bioinformatics, 2006,22 ( 20 ) : 2532 - 2538.
  • 5RUAN Quan-song, STEELE J A, SCHWALBACH M S, et al. A dynamic programming algorithm for binning microbial community profiles [J]. Bioinformatics ,2006,22 (12) : 1508-1514.
  • 6HAN Jing-dong, BERTIN N, HAO T, et al. Evidence for dynamically organized modularity in the yeast protein-protein interaction network [ J ]. Nature, 2004,430 ( 6995 ) : 88-93.
  • 7BAR-JOSEPH Z. Analyzing time series gene expression data [ J ]. Bioinformatics ,2004,20(16) :2493-2503.
  • 8RHRISSORRAKRAI K, GUNSALUS K C. MINE:module identification in networks [ J ]. BMC Bioinformaties ,2011,12 : 192.
  • 9张少华,尚学群,王淼.一种衡量基因语义相似度的新方法[J].计算机应用研究,2011,28(3):957-960. 被引量:2
  • 10AACH J, CHURCH G M. Aligning gene expression time series with time warping algorithms [ J ]. Bioinformatics ,2001,17 (6) :495- 508.

二级参考文献12

  • 1WANG J Z,DU Z,Payattakool R,et al.A new method to measure the semantic similarity of GO term[J].Bioinformatics,2007,23 (10):1274-1281.
  • 2NAGAR A,AL-MUBAID H.A new path length measure based on CO for gene similarity with evaluation using SGD pathways[C] //Proc of the 21st IEEE International Symposium on Computer-Based Medical Systems.Washington DC:IEEE Computer Society,2008:590-595.
  • 3CAVIEDES J,CIMINO J.Towards the development of a conceptual distance metric for the UMLS[J].Biomedical Irdormatics,2004,37 (2):77-85.
  • 4RADA R,MILI H,BICKNELL E,et al.Development and application of a metric on semantic nets[J].IEEE Trans on Systems,Man,and Cybernetics,1989,19(l):17-30.
  • 5SEVILLA J L,SEGURA V,PODHORSKI A,et al.Correlation between gone expression and CO semantic similarity[J].IEEE/ACM Trans on Computational Biology and Bioinformatics,2005,2 (4):330-338.
  • 6AL-MUBAID H,NGUYEN H A.Similarity computation using multiple UMLS ontologies in a unified framework[C] //Proc of the 22nd ACM Symposium on Applied Computing.2007.
  • 7ASHBURNER M,BALL C A,BLAKE J A,et al.Cone ontology:tool for the unification of biology[J].The Gene Ontology Consortium Nature Genet,2000,25(1):25-29.
  • 8HARRIS M A,CLARK J,IRELAND A,et al.The gene ontology (GO) database and informatics resource[J].Nucleic Acids Res,2004,32(Sup):258-261.
  • 9SCHLICKER A,DOMINGUES F S,RAHNENFUHRER J,et al.A new measure for functional similarity of gone products based on gene ontology[J].BMC Bioinformatics,2006,7:302.
  • 10JIANG J,CONRATH D.Semantic similarity based on corpus statistics and lexical taxonomy[C] //Proc of the 10th International Conference on Research on Computational Linguistics.1997:19-33.

共引文献1

同被引文献12

  • 1GUILLAUME J L, LATAPY M. Bipartite graphs as models of com- plex networks[ J]. Physica A,2006,371 (2) :795-813.
  • 2HOLEMN P, LILJEROS F, EDLING C R, et a l. Network bipartivity [J]. Physical Review E,2003,68(5) :056107.
  • 3WATFS D J, STROGATZ S H. Collective dynamics of "small-world" networks[J]. Nature,1998,393(6684):440,442.
  • 4UCHYIGIT G, MA M Y. Personalization techniques and recommen- der systems [ M ], [ S, 1. ] : World Scientific Publishing Company, 2008.
  • 5JEONG H, TOMBOR B, ALBERT R, et al. The large-scale organi- zation of metabolic networks [ J ]. Nature, 2000,407 ( 6804 ) : 651 - 654.
  • 6SHANG M S, LU L, ZHANG Y C, et al. Empirical analysis of Web- based user-abject bipartite networks [ J ]. Europhysics Letters,2010 90(4) :48006.
  • 7SALGANIK M J, DODDS P S, WATTs D J. Experimental study ot inequality and unpredictability in an artificial Cultural Laarket [ J ]. Sci0nc0,2006,311(5762) : 854-856.
  • 8ONNELA J P, REED-TSOCHAS F. Spontaneous emergence of socia: influence in online: systems [ J ]. Proceedings of the Nationa Acade-my of Sciences ,2010,107 (43) : 18375-18380.
  • 9KITSAK M, KRIOUKOV D. Hidden variables in bipartite network. [J]. Physical Review E,2011,84(2) :026114.
  • 10BURDA Z, KRZYWICKI A. Uncorrelated random networks [ J ]. Physical Review E,2003,67(4) :046118.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部