期刊文献+

二元周期倒序序列及其对偶序列的复杂性分析 被引量:5

Complexity of binary periodic inverse sequence and its generalized bit-wise negative sequence
下载PDF
导出
摘要 讨论了有限域F2上周期倒序序列∞与原序列S∞之间的极小多项式以及生成函数的关系;同时研究了∞按位取反后得到的对偶序列■∞与原序列S∞之间的极小多项式和线性复杂度的关系。这些结果对研究流密码密钥流序列的线性复杂度有一定的应用价值. This paper presented the relation between the inverse sequence s∞ and periodic sequence S∞ about the minimal polynomial.At the same time,it discussed the same problems between the generalized bit-wise negative periodic sequence S∞ and periodic sequence S∞ too.The results can be used to analyze the complexity of periodic sequences of stream ciphers.
作者 王菊香
出处 《计算机应用研究》 CSCD 北大核心 2012年第12期4654-4655,4658,共3页 Application Research of Computers
基金 安徽建筑工业学院青年科学研究专项经费资助项目(2011183-16)
关键词 极小多项式 线性复杂度 倒序序列 对偶序列 minimal polynomial linear complexity inverse sequence generalized bit-wise negative sequence
  • 相关文献

参考文献12

  • 1DING Cun-sheng, XIAO Guo-zhen, SHAN Wei-juan. The stability theory of stream ciphers [ C ]//Lecture Notes in Computer Science. New York : Springer-Verlag, 1991 : 85-100.
  • 2HASSE H. Theorie der hoheren differentiale in einem algebraischen funktionenk rper mit vollkommenem konstantenktirper bei beliebiger charakteristik[ J]. Reine Angow Math, 1936,175: 50-54.
  • 3HU Hong-gang, FENG Deng-guo. On the 2-Adic complexity and the k-Error 2-Adic complexity of periodic binary sequences [ J ]. IEEE Trans on Information Theory,2008,54(2) :874-883.
  • 4王菊香,朱士信.F_p上周期序列S~∞与~∞的线性复杂度分析[J].计算机应用研究,2009,26(2):742-743. 被引量:6
  • 5NIEDERREITER H. Linear complexity and related complexity measures for sequences [ C ]//Lecture Notes in Computer Science, Vol 2904. Berlin : Springer-Verlag,2003 : 1 - 17.
  • 6王菊香,朱士信.F_2上周期多序列及其广义对偶多序列的复杂性分析[J].计算机应用研究,2010,27(10):3880-3882. 被引量:3
  • 7王菊香,朱士信.P元周期多序列及其广义对偶多序列的复杂性分析[J].计算机应用研究,2011,28(10):3831-3833. 被引量:2
  • 8ARMAND M A. Multisequence shift register synthesis over commutative rings with identity with applications to decoding cyclic codes over integer rings [ J ]. IEEE Trans on Information Theory, 2004,50 ( 1 ) :220-228.
  • 9CHEN Po. Multisequence linear shift register synthesis and its application to BCH decoding [ J ]. IEEE Trans on Communication, 1976,24(4) :438-440.
  • 10FENG G L, TSENG K K. A generalized Euclidean algorithm for muttisequence shift-register synthesis [ J]. IEEE Trans on Information Theory, 1989,35 ( 3 ) :584-594.

二级参考文献32

  • 1王菊香,朱士信.F_p上周期序列S~∞与~∞的线性复杂度分析[J].计算机应用研究,2009,26(2):742-743. 被引量:6
  • 2王丽萍,祝跃飞.F[x]-lattice basis reduction algorithm and multisequence synthesis[J].Science in China(Series F),2001,44(5):321-328. 被引量:4
  • 3DING Cun-sheng, XIAO Guo-zhen, SHAN Wei-juan. The stability theory of stream ciphers[ C]//Lecture Notes in Computer Science. Berlin:Springer, 1991.
  • 4HASSE H. Theorie der hoheren differentiale in einem algebraischen Funktiorienkorper mit vollkommenem Konstantenkorper bei beliebiger Charakteristik [ J ]. Journal Reine Angewandte Mathematik, 1936, 175:50-54.
  • 5NIEDERREITER H. Linear complexity and related complexity measures for sequences [ C ]//Lecture Notes in Computer Science. Berlin : Springer-Verlag, 2003 : 1- 17.
  • 6MEIDL W, NIEDERREITER H. The expected value of the joint linear complexity of periodic muhisequences[ J]. Journal of Complexity, 2003, 19(1) :61-72.
  • 7MEIDL W, WINTERHOF A. On the joint linear complexity profile of explicit inversive multisequences [ J ]. Journal of Complexity, 2005, 21 (3) :324- 336.
  • 8XING Chao-ping, LAM K Y, WEI Zheng-hong. A class of explicit perfect multi-sequences [ C ]//Lecture Notes in Computer Science. Berlin : Springer-Verlag, 1999:299- 305.
  • 9XING Cao-ping. Multi-sequences with almost perfect linear complexity profile and function fields over finite fields[ J]. Journal of Complexity, 2000, 16(4) :661-675.
  • 10ARMAND M A. Mulfisequence shift register synthesis over commutative rings with identity with applications to decoding cyclic codes over integer rings[ J]. IEEE Trans on Information Theory, 2004 , 50 ( 1 ) :220- 229.

共引文献7

同被引文献30

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部