期刊文献+

基于幂次变换预处理的PCA人脸识别算法 被引量:1

PCA algorithm based on power transformation pretreatment for face recognition
下载PDF
导出
摘要 为了抑制主成分分析(PCA)对图像中光照等变化的较高敏感性、进一步提高人脸识别率,提出了一种对图像灰度进行幂次变换预处理的策略。首先采用随机序列来选取人脸库中的训练样本和测试样本,然后对随机人脸样本进行幂次变换和Butterworth低通滤波处理,最后应用PCA处理的人脸识别算法。基于ORL数据库的实验表明,在适当选择幂次变换参数的情况下,基于幂次变换预处理的PCA人脸识别算法平均人脸识别率达到96.70%。因此,基于幂次变换预处理的PCA人脸识别算法比传统的PCA算法具有更高的识别精度。 This paper proposed an efficient method for face recognition.It developed a pretreatment strategy that could deal with image gradation to restrain upper sensitivity of PCA from the change of illumination in an image.The training and testing samples were selected with random sequences from the face database,processed with power transformation and a Butterworth low-pass filter,and finally processed with the PCA algorithm.The experimental results based on the ORL database show that the achieved recognition rate with the proper power transformation values is 96.70%.Therefore,the proposed algorithm can have higher accuracy of recognition than the traditional ones.
出处 《计算机应用研究》 CSCD 北大核心 2012年第12期4747-4749,共3页 Application Research of Computers
关键词 人脸识别 主成分分析 幂次变换 低通滤波 face recognition principal component analysis(PCA) power transformation low-pass filtering
  • 相关文献

参考文献10

二级参考文献114

  • 1董火明,高隽,汪荣贵.多分类器融合的人脸识别与身份认证[J].系统仿真学报,2004,16(8):1849-1853. 被引量:17
  • 2李武军,王崇骏,张炜,陈世福.人脸识别研究综述[J].模式识别与人工智能,2006,19(1):58-66. 被引量:107
  • 3P. BELHUMEUR AND D. KRIEGMAN. What is the Set of Images of an Object Under All Possible Lighting Conditions[J]. International Journal of Computer Vision, 1998,28(3) :270 - 277.
  • 4A. GEORGHIADES, P. BELHUMEUR, AND D. KRIEGMAN. From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001,643 - 660.
  • 5ADINI, Y., MOSES, Y., ULLMAN, S. Face recognition: The problem of compensating for changes in illumination direction [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (7), 721 - 732.
  • 6N. Mekuz, C. Bauckhage, and J. Tsotsos. Face recognition with weighted locally linear embedding [ C ]. Proceedings of the Second Canadian Conference on Computer and Robot Vision. (CRV'05), 290 - 296.
  • 7X. Wang, and X. Tang. A Unified Framework for Subspace Face Recognition[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,26(9) : 1222 - 1228.
  • 8X. Xie, and K. Lain. Face recognition under varying illumination based on a 2D face shape model [ J ]. Pattern Recognition, 2005,3a (2) :221 - 230.
  • 9D. CAI, X. HE, Y. HU, et al. Learning a spatially smooth for face recognition [ C ]. IEEE Conference on Computer Vision and Pattern Recognition,2007,1 - 8,650 - 656.
  • 10T. KIM, J. KITTLER, AND R. CIPOLLA.Learning Discriminative Canonical Correlations for Object Recognition with Image Sets [ J]. Lecture Notes in Computer Science, 2006,3953:251.

共引文献218

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部