期刊文献+

一个混合幂的丢番图不等式(英文) 被引量:1

On a Diophantine Inequality With Mixed Powers
原文传递
导出
摘要 本文证明了如果λ_1,λ_2,…,λ_8为不全同号的非零实数,其中λ_1/λ_2为无理数,则对任意实数κ及0<σ<1/8,不等式|λ_1x_1~2+λ_2x_2~2+sum ( λ_ix_i^4+κ) from i=3 to 8|<(max 1≤i≤8 xi)^(-σ)有无穷多组整数解(x_1,x_2,…,x_8). In this paper, it is proved that if λ1, λ2,…, λ8 are nonzero real numbers, not all of the same sign, and λ1/λ2 is irrational, then for any real number κ and 0〈σ〈1/8, the inequality |λ1x1^2+λ2x2^2+∑(i=3→8)λixi^4+κ|〈(max(1≤i≤8)x1)^-σ has infinitely many solutions in positive integers x1, x2,… ,x8. This result constitutes an improvement upon that of Gong and Li.
作者 史三英
出处 《数学进展》 CSCD 北大核心 2012年第6期672-678,共7页 Advances in Mathematics(China)
基金 Project supported in part by the Fundamental Research Funds for the Central Universities(No. 2010HGBZ0603) by NSFC(No.11071186 and No.11201107)
关键词 丢番图不等式 混合幂 圆法 diophantine inequality mixed powers circle method
  • 相关文献

参考文献13

  • 1Baker, R.C. and Harman, G., Diophantine inequalities with mixed powers, J. Number Theory, 1984, 18(1): 69-85.
  • 2Bambah, R.P., Four squares and a kth power, Quart. J. Math. Oxford, 1954, 5(2): 191-202.
  • 3Brudern, J., Additive Diophantine inequalities with mixed powers, I, Mathematika, 1987, 34(2): 124-130.
  • 4Brudern, J., Additive Diophantine inequalities with mixed powers, II, Mathematika, 1987, 34(2): 131-140.
  • 5Brudern, J., Additive Diophantine inequalities with mixed powers, III, J. Number Theory, 1991, 37(2): 199-210.
  • 6Cook, R.J., Diophantine inequalities with mixed powers, J. Number Theory, 1977, 9(1): 142-152.
  • 7Cook, R.J., Diophantine inequalities with mixed powers, II, J. Number Theory, 1979, 11(1): 49-68.
  • 8Davenport, H., Indefinite quadratic forms in many variables, Mathematika, 1956, 3(2): 81-101.
  • 9Davenport, H. and Heilbronn, H., On indefinite quadratic forms in five variables, J. London Math. Soc., 1946, 21(3): 185-193.
  • 10Davenport, H. and Roth, K.F., The solubility of certain Diophantine inequalities, Mathematika, 1955, 2(2): 81-96.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部