摘要
本文证明了如果λ_1,λ_2,…,λ_8为不全同号的非零实数,其中λ_1/λ_2为无理数,则对任意实数κ及0<σ<1/8,不等式|λ_1x_1~2+λ_2x_2~2+sum ( λ_ix_i^4+κ) from i=3 to 8|<(max 1≤i≤8 xi)^(-σ)有无穷多组整数解(x_1,x_2,…,x_8).
In this paper, it is proved that if λ1, λ2,…, λ8 are nonzero real numbers, not all of the same sign, and λ1/λ2 is irrational, then for any real number κ and 0〈σ〈1/8, the inequality |λ1x1^2+λ2x2^2+∑(i=3→8)λixi^4+κ|〈(max(1≤i≤8)x1)^-σ has infinitely many solutions in positive integers x1, x2,… ,x8. This result constitutes an improvement upon that of Gong and Li.
出处
《数学进展》
CSCD
北大核心
2012年第6期672-678,共7页
Advances in Mathematics(China)
基金
Project supported in part by the Fundamental Research Funds for the Central Universities(No. 2010HGBZ0603)
by NSFC(No.11071186 and No.11201107)
关键词
丢番图不等式
混合幂
圆法
diophantine inequality
mixed powers
circle method