期刊文献+

随机规划逼近问题最优解集的下半收敛性 被引量:7

The Lower Semiconvergence of Optimal Solution Sets of Approximation Problems for Stochastic Programming
原文传递
导出
摘要 本文首先在无界且可积函数族对偶的概率测度空间上引入了最小信息概率度量,给出了这种概率度量收敛的充要条件及其与概率测度序列弱收敛的关系.然后在初始随机规划问题最优解集正则的条件下,利用最优解集的结构特征研究了随机规划逼近问题最优解集关于最小信息概率度量收敛的下半收敛性条件,从而得到了随机规划逼近最优解集Hausdorff收敛的一个充分条件. This paper first introduces minimal information(m.i.) probability metric in duality spaces of unbounded integrable functions family, and gives the sufficient and necessary condition of the convergence in this probability metric and obtains the relationship between convergence in minimal information(m.i.) probability metric and weak convergence of probability measure sequence. Second, under the regularity condition of optimal solution sets for original stochastic programs, the lower semiconvergence condition of approximate optimal solution sets for stochastic programs is studied with structure characteristic, when the probability measure sequence is convergence in minimal information(m.i.) probability metric. Finally, a sufficient condition for Hausdorff convergence of approximate optimal solution sets in stochastic programs is obtained.
出处 《数学进展》 CSCD 北大核心 2012年第6期747-754,共8页 Advances in Mathematics(China)
基金 国家自然科学基金资助课题(No.60574075) 重庆市教委基金资助项目(No.KJ091211)
关键词 随机规划 最小信息概率度量 逼近最优解集 下半收敛性 Hausdorff收敛 stochastic program minimal information(m.i.) probability metric approximate optimal solution set lower semiconvergence Hausdorff convergence
  • 相关文献

参考文献13

  • 1Romisch, W. and Schultz, R., Stability analysis for stochastic programs, Annals of Operations Research, 1991, 30(1): 241-266.
  • 2Klatte, D., On quantitative stability for non-isolated minima, Control and Cybernetics, 1994, 23(2): 183-200.
  • 3Rachev, S.T., Probability Metrics and the Stability of Stochastic Models, Chichester: Wiley, 1991.
  • 4Schultz, R., Some aspects of stability in stochastic programming, Annals of Operations Research, 2000, 100(1): 55-84.
  • 5霍永亮,刘三阳.随机规划逼近最优解集的上半收敛性[J].西安电子科技大学学报,2005,32(6):953-957. 被引量:17
  • 6Svetlozar, T.R. and Romisch, W., Quantitative stability in stochastic programming: the method of proba- bility metrics, Mathematics of Operations Research, 2002, 27(4): 792-818.
  • 7Dupacova, J., Growe-Kuska, N. and Romisch, W., Scenario reduction in stochastic programming: an ap- proach using probability metrics, Mathematical Programming, Set. A, 2003, 95(3): 493-511.
  • 8Lucchetti, R., Salinetti, G. and Wets, R.J.B., Uniform convergence of probability measures: topological criteria, Journal of Multivariate Analysis, 1994, 51(6): 252-264.
  • 9Alfred, M., Integral probability metrics and their generating classes of functions, Advances in Applied Prob- ability, 1997, 29(2): 429-443.
  • 10Bickel, P.J. and Millar, P.W., Uniform convergence of probability measures on classes of functions, Statistica Sinica, 1992, 2(1): 1-15.

二级参考文献15

  • 1孙德锋,王金德.一种解带补偿的随机规划的逼近方法[J].计算数学,1994,16(1):80-92. 被引量:3
  • 2马华,陈开周.极小化有限个阶梯函数和的一种分枝定界算法[J].西安电子科技大学学报,1994,21(1):79-84. 被引量:1
  • 3霍永亮,刘三阳.函数序列关于弱收敛概率测度序列积分的极限定理[J].兰州大学学报(自然科学版),2005,41(6):125-129. 被引量:6
  • 4Robinson S M and Wets R J B. Stability in two-stage stochastic programming. SIAM Journal on Control and Optimization, 1987, 25(6): 1409-1416.
  • 5Birge J R and Wets R J B. Designing approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse. Mathematical Programming Study, 1986, 27(1): 54-102.
  • 6Dupacova J and Wets R J B. Asymptotic behavior of statistical estimators and of optimal solutions of optimization problems. The Annals of Statistics, 1988, 16(2): 1517-1549.
  • 7Zervos M. On the epiconvergence of stochastic optimization problems. Mathematics of Operations Research, 1999, 24(2): 495-508.
  • 8Lucchetti R, Salinetti G and Wets R J B. Uniform convergence of probability measures: Topological criteria. Journal of Multivariate Analysis, 1994, 51(2): 252-264.
  • 9Salinetti G. Consistency of statistical estimators: The epigraphical view. S. Uryasev and P. M. Pardalos. Stochastic Optimization: Algorithms and Applications. Dordrecht: Kluwer Academic Publishers, 2001:365-383.
  • 10Artstein Z and Wets R J B. Stability results for stochastic programs and sensor, allowing for discontiuous objective functions. SIAM Journal on Optimization, 1994, 4(3): 537-550.

共引文献19

同被引文献40

  • 1霍永亮,刘三阳.随机规划逼近最优解集的上半收敛性[J].西安电子科技大学学报,2005,32(6):953-957. 被引量:17
  • 2ROMISCH W, SCHULTZ R. Stability analysis forstochastic programs [ J ]. Annals of OperationsResearch, 1991, 30: 241-266.
  • 3KLATTE D. On quantitative stability for non-isolated minima[J]. Control and Cybernetics,1994,23(2): 183-200.
  • 4RACHEV S T. Probability Metrics and theStability of Stochastic Models [M]. New York:Wiley, 1991.
  • 5SCHULTZ R. Some aspects of stability in stochasticprogramming [ J ]. Annals of Operations Research ,2000, 100(1): 55-84.
  • 6SVETLOZAR T,RACHEV, ROMISCH R W.Quantitative stability in stochastic programming: themethod of probability metrics [J]. Mathematics ofOperations Research , 2002,27(4) : 792-818.
  • 7DUPAVCOVA J, GROWE-KUSKA N, ROMISCHW. Scenario reduction in stochastic programming:An approach using probability metrics [ J ].Mathematical Programming,2003,95 ( 2): 493-511.
  • 8PENNANEN T, KOIVU M. Epi-convergentdiscretizations of stochastic programs via integrationquadratures [ J ]. Numerische Mathematik,2005,100(1): 141-163.
  • 9R()MISCH W, SCHULTZ R. Stability Analysis for Stochastic Programs [J]. Annals of Operations Research, 1991, 30: 241--266.
  • 10KLATTE D. On Quantitative Stability {or Non-Isolated Minima [J]. Control and Cybernetics, 1994, 23 (2) : 183--200.

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部