期刊文献+

无重复因析试验中一种散度效应的迭代估计方法 被引量:1

An Iterative Estimator of Dispersion Effects in Unreplicated Factorial Experiments
原文传递
导出
摘要 在无重复因析试验下,基于李济洪,王钰等(2010)提出的散度效应的AMH估计,给出了一种散度效应的迭代估计方法(称为IAMH估计),通过模拟试验验证了此方法比常用的AMH,MH估计具有更小的均方误差. In unreplicated factorial experiments, we give an iterative estimator of dispersion effects based on the AMH estimator proposed by Li ji-hong and Wang yu et al. (2010) (called IAMH estimator). And we prove that the IAMH estimator has more smaller mean square error than the commonly used AMH and MH estimators by simulated experiments.
作者 杨柳 王钰
出处 《数学的实践与认识》 CSCD 北大核心 2012年第23期144-148,共5页 Mathematics in Practice and Theory
关键词 散度效应模型 IAMH估计 均方误差 dispersion effects model IAMH estimator mean square error
  • 相关文献

参考文献8

  • 1Hamada M and Balakrishnan N. Analyzing unreplicated factorial experiments: a review with some new proposals[J]. Statistica Sinica, 1998, 8: 1-41.
  • 2Bergman B and Hynen A. Dispersion effects form unreplicated designs in the 2k-p series[J]. Tech- nometrics, 1997, 39: 191-198.
  • 3Brenneman W A and Nair V N. Methods for identifying dispersion effects in unreplicated factorial experiments: a critical analysis and proposed strategies[J]. Technometrics, 2001, 43: 388-404.
  • 4Wiklander K and Holm S. Dispersion effects in unreplicated factorial designs[J]. Appl Stochastic Models Bus Ind, 2003, 19: 13-30.
  • 5Chen-Tuo Liar. Two-level factorial designs for searching dispersion factors and estimating location main effects[J]. Journal of Statistical Planning and Inference, 2006, 136: 4071-4087.
  • 6Van de Ven P M. On the equivalence of three estimators for dispersion effects in unreplicated two-level factorial designs[J]. Journal of Statistical Planning and Inference, 2008, 138: 18-29.
  • 7李济洪,王钰,张星.两水平无重复因析试验散度效应的估计[J].应用数学学报,2010,33(4):710-722. 被引量:3
  • 8杨柳,李济洪,王钰.无重复因析试验中多个散度效应检验的一种改进方法[J].数学的实践与认识,2010,40(12):132-138. 被引量:1

二级参考文献30

  • 1Box G E P and Meyer R D. Dispersion effects from fractional designs[J]. Technometrics, 1986, 28: 19-27.
  • 2Wang P C. Tests for dispersion effects from orthogonal arrays[J]. Compuatioal Statistics and Data Analysis, 1989, 8: 109-117.
  • 3Montcomery D C. Using fractional factorial designs for robust process development[J]. Quality Engineering, 1990, 3: 193-205.
  • 4Bergman B and Hynen A. Dispersion effects form unreplicated designs in the 2^k-p series[J]. Technometrics, 1997, 39: 191-198.
  • 5Liao C T, Iyer H K. Optimal 2^n-p fractional factorial designs for dispersion effects under a locationdispersion model[J]. Comm Statist Theory Methods, 2000, 29: 823-835.
  • 6Mcgrath R N and Lin K J. Confounding of location and dispersion effects in urgeplicated fractional factorials[J]. Journal of Quality Technology, 2001, 33: 129-139.
  • 7Brenneman W A and Nair V N. Methods for identifying dispersion effects in unreplicated factorial experiments: a critical analysis and proposed strategies[J]. Technometriesl 2001, 43: 388-404.
  • 8Wiklander K, Holm S. Dispersion effects in unreplicated factorial designs[J]. Appl Stochastic Models Bus Ind, 2003, 19: 13-30.
  • 9McGrath R N and Lin K J. Testing multiple dispersion effects in unreplicated fractional factorial designs[J]. Technometrics, 2001, 43: 406-414.
  • 10Taguchi G and Wu Y. Introduction to Off-Line Quality Control[M]. Central Japan Quality Control Association, Tokyo, Japan, 1980.

共引文献2

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部