期刊文献+

改进型PCNN算法在眼底黄斑水肿区分割中的应用 被引量:1

Application of Improved PCNN Algorithm in Retinal Macular Edema Segmentation
下载PDF
导出
摘要 为了从黄斑的OCT图像提取黄斑水肿的轮廓,估算水肿区体积,需精确地分割该区域。利用了改进的脉冲耦合神经网络(PCNN)算法,通过自适应选择基准阈值以及简化神经网络参数的方法,分割出OCT图像中的眼底黄斑水肿二值图。根据其图像信息熵值最大原则,确定最佳迭代次数为8次。采用误分率进行性能评价。图像仿真实验结果表明,算法能够快速准确提取黄斑水肿区,为OCT图像后续的分析提供依据。 In order to extract the outlines of macular edema from OCT images of maculars, and estimate the volume of edema, we have to accurately segment the macular edema region. In this paper, an improved PCNN algorithm was proposed to conduct the above process. Combined with the adaptive base threshold, and the simplified neural network parameters, a binary image of macular edema was produced. According to the principle of maximum image entropy, the optimal number of iterations was determined as 8, which was evaluated by its misclassification rate. Simulation showed that the proposed algorithm could extract the macular edema region rapidly and accurately, providing the basis for furhter OCT image analysis.
出处 《中国医疗器械杂志》 CAS 2012年第6期411-414,共4页 Chinese Journal of Medical Instrumentation
关键词 分割 相干光断层扫描成像 阈值 PCNN 黄斑水肿 segmentation optical coherence tomography(OCT) threshold PCNN macula edema
  • 相关文献

参考文献14

  • 1Feldchtein F, Gelikonov V M, Gelikonov GV. In vivo optical coherence tomograpgy of teeth and oral mucosa[J]. SPIE, 1998, 3567: 97-100.
  • 2M. K. Garvin, M. D. Abrhmoff, X.Wu, et al. Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images[J]. IEEE Transctions on Medical Imaging, 2009, 28 (9): 1436-1447.
  • 3温博,周传清,任秋实.高分辨率眼科频域光学相干层析成像仪的研究与设计[J].中国医疗器械杂志,2010,34(5):339-342. 被引量:3
  • 4杨平,彭清,刘维平,杨新.一种眼底黄斑水肿OCT图像分割方法[J].生物医学工程学杂志,2011,28(5):1001-1006. 被引量:6
  • 5Leitgeb R, Hitzenberger. CK. Fercher AF. Performance of fourier domain vs. time domain optical coherence tomography[J]. Optics Express, 2003, 11(8): 889-892.
  • 6Charles M Gray, Peter Konig,Andreas K Engel,et al. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects gobal stimulus properties[J]. Nature, 1989, 3(23): 334-336.
  • 7Johnson JL, Padgett ML. PCNN models and applications[J]. IEEE Transaction on Neural Networks, 1999, 10(3): 480- 498.
  • 8Eckhorn R, Reitbeock H J, Arndt M, et al. Feature linking via synchronization among distributed assemblie: Simulation of results from cat coax[J]. Neural Computation, 1990, (2): 293-305.
  • 9Kuntimad G, Ranganath HS. Perfect image segmentation using pulse coupled neural networks[J]. IEEE Transactions on Neural Networks, 1999, 10(3): 591-596.
  • 10祝双武,郝重阳.一种基于改进型PCNN的织物疵点图像自适应分割方法[J].电子学报,2012,40(3):611-616. 被引量:13

二级参考文献43

共引文献19

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部