期刊文献+

子矢量排序的渐进不相似度逼近算法

Improved incremental dissimilarity approximations algorithm using sub-vector sorting
原文传递
导出
摘要 渐进不相似度逼近(IDA)算法是一种新近提出的高性能快速图像匹配算法,它通过分割匹配矢量,避免了大量的基于像素的计算。但是分割后的子矢量能量集中性差,因此算法效率仍有提升空间。为了改进能量集中性差这个问题,提出一种按子矢量方差顺序展开的方案,按该顺序展开子矢量能使匹配矢量排除得更快,平均展开的子矢量数下降,明显减少了搜索空间。除此之外,还加入了在IDA测试之前的利用整体矢量模的一次新的排除测试,并在子矢量展开中引入了PDS(partial distortion search)算法。本文改进算法对图像数据库中室内场景、室外自然场景和室外人文场景这3类图像进行测试时,整体匹配效率较IDA算法提升了72%~83%。 The incremental dissimilarity approximations (IDA) algorithm is a recently proposed high-efficient fast image pat- tern matching algorithm. By splitting the matching vectors, the IDA algorithm saves a lot of pixel-dependment calculations. However, the sub-vectors have a rather weak energy compaction after splitting. This means IDA's efficiency can further be improved. To avoid the weak energy compaction, sub-vector ordering is proposed, which sorts the sub-vectors by their vari- ances. Candidates would be pruned earlier by the sorted order in pattern matching. Therefore, the average number of unfolded sub-vectors is reduced, which also reducts the search space. Additionally, one more pruning test using the whole vector' s norm before IDA is proposed in our work, and the PDS ( partial distortion search) algorithm is introduced in the unfolding sub-vectors step. In our experiment, by testing three types of images in the data sets (indoor scene, natural scene, streetscape), the overall efficiency of proposed algorithm is improved by 72% ~ 83% compared to the original IDA algorithm.
出处 《中国图象图形学报》 CSCD 北大核心 2012年第12期1478-1484,共7页 Journal of Image and Graphics
基金 高校博士点专项基金项目(20100201110030) 中兴通讯技术开发项目(201112045) 浙江大学开放基金项目(A1115)
关键词 快速图像匹配 矢量分割 IDA算法 方差排序 高分辨率图像 fast pattern matching vector partitioning IDA algorithm variance sorting high resolution image
  • 相关文献

参考文献9

  • 1Hel Or Y, Hel Or H. Real time pattern matching using projection kernels [J]. IEEE Trans. on Pattern Anal. Mach. Intell., 2005,27(9): 1430-1445.
  • 2Artz G B, Hel Or H, Hel Or Y. The Gray-code filter kernels [J] . IEEE Trans. on Pattern Anal. Mach. Intell., 2007, 29(3) : 382-393.
  • 3Gharavi A M. A fast globally optimal algorithm for template matc?hing using low-resolution pruning [J]. IEEE Trans. on Image Process, 2001, 10 (4) : 526-533.
  • 4Mattoccia S, Tombari F, Stefano L D. Fast full-search equivalent template matching by enhanced bounded correlation [J]. IEEE Trans. on Image Process. , 2008, 17 ( 4 ) : 528 -538.
  • 5Bei CD, Gray R M. An improvement of the minimum distortion encoding algorithm for vector quantization [J]. IEEE Trans. on Commun. , 1985,33(10): 1132-1133.
  • 6Tombari F, Mattoccia S, Stefano Di L. Full search-equivalent pattern matching with incremental dissimilarity approximations [J]. IEEE Trans. on Pattern Anal. Mach. Intell., 2009, 31(1): 129-14l.
  • 7Schweitzer H, Deng R, Anderson R F. A dual-bound algorithm for very fast and exact template matching [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 ( 3 ) : 459470.
  • 8McDonnell MJ. Box-filtering techniques [J]. Comput. Graph. Image Process. , 1981,17 (1) : 65-70.
  • 9Crow F. Summed-area tables for texture mapping [J]. Comput. Graph., 1984, 18(3): 207-212.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部