摘要
在非线性项f(u)在原点满足渐近线性增长、无穷远处满足超线性或次线性增长条件下,研究了二阶非线性离散周期边值问题的可解性解。应用Robinowitz全局分歧定理,给出了边值问题正解全局行为的完整描述,并确定了参数的最佳区间。
Under the condition that nonlinearity f(u) satisfies asymptotically linear growth at the origin and sublinear growth or suplinear growth at the infinity, the solvabitity for nonliner discrete periodic boundary value problems are discussed. By using Robinowitz global bifurcation theorem, a complete description of the global behavior of positive solution for the boundary value problem is given, and the optimal interval of a positive parameter is determined.
出处
《河北科技大学学报》
CAS
2012年第5期381-383,458,共4页
Journal of Hebei University of Science and Technology
基金
国家自然科学基金资助项目(11071053)
河北省自然科学基金资助项目(A2009001426)
关键词
周期边值问题
分歧
GREEN函数
解
periodic boundary value problem
bifurcation
Green's function
solution