期刊文献+

非线性离散周期边值问题的可解性 被引量:2

Solvability for nonliner discrete periodic boundary value problems
下载PDF
导出
摘要 在非线性项f(u)在原点满足渐近线性增长、无穷远处满足超线性或次线性增长条件下,研究了二阶非线性离散周期边值问题的可解性解。应用Robinowitz全局分歧定理,给出了边值问题正解全局行为的完整描述,并确定了参数的最佳区间。 Under the condition that nonlinearity f(u) satisfies asymptotically linear growth at the origin and sublinear growth or suplinear growth at the infinity, the solvabitity for nonliner discrete periodic boundary value problems are discussed. By using Robinowitz global bifurcation theorem, a complete description of the global behavior of positive solution for the boundary value problem is given, and the optimal interval of a positive parameter is determined.
作者 董士杰
出处 《河北科技大学学报》 CAS 2012年第5期381-383,458,共4页 Journal of Hebei University of Science and Technology
基金 国家自然科学基金资助项目(11071053) 河北省自然科学基金资助项目(A2009001426)
关键词 周期边值问题 分歧 GREEN函数 periodic boundary value problem bifurcation Green's function solution
  • 相关文献

参考文献10

  • 1WANG Hai-yan.Positive periodic solutions for functional differential equations[J].J Differential Equations,2004,202(26):615-627.
  • 2CHU J,TORRES P J,ZHANG M.Periodic solutions of second order non-autonomous singular dynamical systems[J].J DifferentialEquations,2007,239(1):196-212.
  • 3YU J,GUO E.Multiplicity results for periodic solutions to delay differential equations via critical point theory[J].J Differential Equa-tions,2005,218(1):15-35.
  • 4DONG Shi-jie,GE Wei-gao.Positive solutions for quasilinear second order differential equation[J].Applicable Analysis,2005,84(12):1 221-1 229.
  • 5董士杰,周长杰.带p-Laplacian算子时滞微分方程多点边值问题的正解[J].河北科技大学学报,2010,31(5):385-389. 被引量:2
  • 6索秀云,郭少聪,张继叶,郭彦平.四阶非局部边值问题方程组正解的存在性[J].河北科技大学学报,2012,33(3):197-201. 被引量:3
  • 7杨飞,刘玉敬,郭彦平.含有一阶导数的非局部四阶边值问题正解的存在性[J].河北科技大学学报,2012,33(4):283-289. 被引量:4
  • 8MA Ru-yun,MA Hui-li.Positive solutions of nonlinear discrete periodic boundary value problems[J].Comput Math Appl,2010,59(1):136-141.
  • 9ATICI F M,GUSEINOV G S.Positive periodic solutions for nonlinear difference equations with periodic coefficients[J].J Math AnalAppl,1999,232:166-182.
  • 10RABINOWITZ P H.Some global results for nonlinear eigenvalue problems[J].J Funct Anal,1971,7:487-513.

二级参考文献24

  • 1Zheng Haiyan (Dept. of Math., College of Huangshan, Huangshan 245041, Anhui) Lu Shiping (College of Math. and Computer Science, Anhui Normal University, Wuhu 241000, Anhui).POSITIVE SOLUTIONS TO FOURTH ORDER MULTI-POINT BOUNDARY VALUE PROBLEMS WITH p-LAPLACIAN OPERATOR[J].Annals of Differential Equations,2009,25(1):105-113. 被引量:2
  • 2刘玉敬,郭少聪,郭彦平.带有积分边值条件的三阶边值问题正解的存在性[J].河北科技大学学报,2012,33(2):93-96. 被引量:5
  • 3郭少聪,郭彦平,张素芬.带2个参数的二阶脉冲微分方程3点边值问题的正解[J].河北科技大学学报,2012,33(2):97-102. 被引量:1
  • 4CARVALHO L A,LADEIRA L A,MARTELLI M.Forbidden periods in delay differential equations[J].Portugaliae Math Port Math,2000,57:259-271.
  • 5HALE J K,HUANG W.Global geometry of stable regions for two delay differential equations[J].J Math Anal Appl,1993,178:344-362.
  • 6LI Y,KUANG Y.Periodic solutions in periodic state-dependent delay equations and population models[J].J Math Anal Appl,2001,255:265-280.
  • 7BAI D,XU Y.Positive solutions of second-order two delay differential systems with twinparameter[J].Nonlinear Anal,2005,63:601-617.
  • 8WANG Y,ZHAO W,GE W.Multiple positive solutions for boundary value problems of secondorder delay differential equations with one-dimensional p-Laplacian[J].J Math Anal Appl,2007,326:641-654.
  • 9JIANG D,WANG J.On boundary value problems for singular second-order functional differential equations[J].J Comput Appl Math,2000,116:231-241.
  • 10JIANG D.Multiple positive solutions for boundary value problems of second-order delay differential equations[J].Appl Math Lett,2002,15:575-583.

共引文献4

同被引文献24

  • 1索秀云,郭少聪,张继叶,郭彦平.四阶非局部边值问题方程组正解的存在性[J].河北科技大学学报,2012,33(3):197-201. 被引量:3
  • 2刘玉敬,郭少聪,郭彦平.带有积分边值条件的三阶边值问题正解的存在性[J].河北科技大学学报,2012,33(2):93-96. 被引量:5
  • 3AGARWAL R P,O'REGAN D. Infinite Interval Problems for Differential,Difference and Integal Equations[M].Dordrecht,the Netherlands:Kluwer Academic Publishers,2001.
  • 4AGARWAL R P,O'REGAN D. Nonlinear boundary value problems on the semi-infinite interval:An upper and lower solution approach[J].Mathematika,2002.129-140.
  • 5BAXLEY J V. Existence and uniqueness for nonlinear boundary value problems on infinite interval[J].Journal of Mathematical Analysis and Applications,1990.127-133.
  • 6JIANG D,AGARWAL R P. A uniqueness and existence theorem for a singular third-order boundary value problemon[0,+∞)[J].Applied Mathematics Letters,2002.445-451.
  • 7MAR. Existence of positive solution for second-order boundary value problems on infinite intervals[J].Applied Mathematics Letters,2003.33-39.
  • 8LIAN H,GE W. Solvability for second-order three-point boundary value problems on a half-line[J].Applied Mathematics Letters,2006,(10):1000-1006.
  • 9LIAN H,PANG H,GE W. Triple positive solutions for boundary value problems on infinite intervals[J].Nonlinear Analysis-Theory Methods and Applications,2007.2199-2207.
  • 10GUO Yanping,YU Changlong,WANG Jufang. Existence of three positive solutions for m-point boundary value problems on infinite intervals[J].Nonlinear Analysis-Theory Methods and Applications,2009.717-722.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部