期刊文献+

典型污染物对微气泡曝气中氧传质特性的影响 被引量:4

Effect of typical contaminants on oxygen transfer in microbubble aeration
下载PDF
导出
摘要 微气泡曝气是一种新型的曝气方式,废水中的污染物对微气泡曝气中氧传质过程具有显著影响。采用气-水旋流微气泡发生装置进行空气微气泡曝气,考察了微气泡曝气中表面活性剂、油脂、苯酚、硝基苯、悬浮固体(高岭土)等典型污染物对氧传质的影响。结果表明,微气泡曝气和传统气泡曝气的表观状态具有明显差异,呈现乳浊状态。表面活性剂、豆油、苯酚、硝基苯等污染物均有助于微气泡的产生和稳定性,从而提高微气泡曝气的气含率和气泡平均停留时间。同时,这些污染物存在时,微气泡曝气氧传质系数为7.44~11.56h-1,α因子为0.77~1.20,显著高于传统气泡曝气。污染物对微气泡的形成和稳定性具有积极作用,可以克服其对氧传质过程的负面效应。气含率和污染物种类是影响微气泡曝气氧传质过程的重要因素。 Mierobubble aeration is a new type of bubble aeration, and contaminants in waste water has great influence on oxy gen transfer in microbubble aeration. The effects of different typical contaminants on oxygen transfer in rnierobubble aeration were investigated by using a gas-water circulation type microbubble generator, including surfaetants, soybean oil, phenol and nitrobenzene as well as suspended solid (kaolin). The results indicate that different from traditional bubble aeration, rnicrobub ble aeration seems like milk-turbid due to very small bubble size. The soluble organic contaminants improve generation and sta bility of rnicrobubbles, resulting in higher gas holdup and gas retention time. The range of oxygen transfer coefficient KLa is 7. 44~11.56 h-1 , and the range of α-factors is 0. 77~1.20 in mierobubble aeration with the typical contaminants under all test conditions, larger than those in traditional bubble aeration. The improvement of microbubble generation and stability in pres ence of the contaminants should be responsible for the reduction of negative effect of contaminants on oxygen transfer. The gas hold-up and contaminant type are the irn!oortant influencing factors for oxygen transfer in microbubble aeration.
出处 《河北科技大学学报》 CAS 2012年第5期469-474,共6页 Journal of Hebei University of Science and Technology
基金 河北省应用基础研究计划重点基础研究项目(11966726D)
关键词 微气泡曝气 典型污染物 气含率 氧传质系数 α因子 microbubble aeration typical contaminants gas holdup oxygen transfer coefficient α- factor
  • 相关文献

参考文献20

  • 1ASHLEY K I,MAVINIC D S,HALL K J.Bench-scale study of oxygen transfer in coarse bubble diffused aeration[J].Water Research,1992,26:1 289-1 295.
  • 2JENKINS K B.Application of oxygen microbubbles for in situ biodegradation of p-xylene-contaminated groundwater in a soil column[J].Biotechnology Progress,1993,9:394-400.
  • 3PARK J Y,CHOI Y J,MOON S,et al.Microbubble suspension as a carrier of oxygen and acclimated bacteria for phenanthrene biodeg-radation[J].Journal of Hazardous Materials,2009,163:761-767.
  • 4CHOI Y J,PARK J Y,KIM Y J,et al.Flow characteristics of microbubble suspensions in porous media as an oxygen carrier[J].Clean,2008,36(1):59-65.
  • 5CHU L B,YAN S T,XING X H,et al.Enhanced sludge solubilization by microbubble ozonation[J].Chemosphere,2008,72:205-212.
  • 6AGARWAL A,NG W J,LIU Y.Principle and applications of microbubble and nanobubble technology for water treatment[J].Chemo-sphere,2011,84:1 175-1 180.
  • 7TERASAKA K,HIRABAYASHI A,NISHINO T,et al.Development of microbubble aerator for waste water treatment using aerobicactivated sludge[J].Chemical Engineering Science,2011,66:3 172-3 179.
  • 8CHU L B,XING X H,YU A F,et al.Enhanced ozonation of simulated dyestuff wastewater by microbubbles[J].Chemosphere,2007,68:1 854-1 860.
  • 9HASEGAWA H,NAGASAKA Y,KATAOKA H.Electrical potential of microbubble generated by shear flow in pipe with slits[J].Fluid Dynamics Research,2008,40(5):55-564.
  • 10XU Q Y,NAKAJIMA M,ICHIKAWA S,et al.A comparative study of microbubble generation by mechanical agitation and sonication[J].Innovative Food Science and Emerging Technologies,2008,9:489-494.

二级参考文献24

  • 1HASEGAWA H, NAGASAKA Y, KATAOKA H. Electrical potential of microbubble generated by shear flow in pipe with slits[J].Fluid Dynamics Research, 2008,40 : 554-564.
  • 2CHU L B,XING X H,YU A F, et al. Enhanced ozonation of simulated dyestuff wastewater by microbubbles [J].Chemosphere,2007,68:l 854-1 860.
  • 3CHOI Y J,PARK J Y,KIM Y J,et al. Flow characteristics of microbubble suspensions in porous media as an oxygen carrier [J]. Clean,2008,36 (1) :59-65.
  • 4XU Q Y,NAKAJIMA M,ICHIKAWA S,et al. A comparative study of microbubble generation by mechanical agitation and sonication[J]. Innovative Food Science and Emerging Technologies, 2008,9 (4) : 489-494.
  • 5TAKAHASHI M, CHIBA K, LIP. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus[J]. J Phys Chem B,2007,111(6) :1 343-1 347.
  • 6BURNS S E, YIACOUMI S, TSOURIS C. Microbubble generation for environmental and industrial separations[J].Separation and Purifieation Technology, 1997,11 : 221-232.
  • 7SHINTAKU H,IMAMURA S,KAWANO S. Microbubble formations in MEMS-fabricated rectangular channels: A high-speed observation[J]. Experimental Thermal and Fluid Science, 2008,32:1 132-1 140.
  • 8KUKIZAKI M,WADA T. Effect of the membrane wettability on the size and size distribution of microbubbles formed from shirasu-porous-glass (SPG) membranes[J]. Colloids and Surfaces A : Physicochemical and Engineering Aspects, 2008,317 : 146-154.
  • 9KUKIZAKI M, WADA T. Effect of surfaetant type on microbubble formation behavior using shlrasu porous glass (SPG) membranes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008,326 : 129-137.
  • 10KUKIZAKI M, GOTO M. Spontaneous formation behavior of uniform-sized microbubbles from shirasu porous glass (SPG) membranes in the absence of water phase flow[J]. Colloids and Surfaces A: Physicochemieal Engineering Aspects, 2007, 296,174-181.

共引文献19

同被引文献68

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部