期刊文献+

基于RBF核函数的集成分类AdaBoost算法研究 被引量:3

Research on AdaBoost Integrated Classification Algorithm Based on RBF Kernel Function
下载PDF
导出
摘要 基于径向基函数的神经网络、支持向量机已被广泛应用于模式分类。为了进一步提高分类的精度,将径向基函数应用于集成的AdaBoost算法,即以RBF神经网络和以RBF核函数的支持向量机分别作为AdaBoost的弱分类器,集成更高精度的强分类。通过对标准数据集的分类实验性能对比,证明了其算法解决分类问题有效性。 Both neural network and SVM (Support Vector Machine) based on RBF have already been widely used in pattern classification. In order to further improve the classification accuracy, RBF function is applied to in- tegrated AdaBoost, namely, RBF neural network and SVM with RBF kernel function are applied as to AdaBoost respectively. Thus it will integrate a higher accuracy strong classifier. By performance classification experiment for standard data set, it proved the algorithm effectiveness in classification.
作者 娄生超
出处 《科学技术与工程》 北大核心 2012年第34期9207-9210,9220,共5页 Science Technology and Engineering
关键词 径向基函数 神经网络 支持向量机 ADABOOST算法 radial basis function neural network SVM AdaBoost algorithm weak classifier comparison
  • 相关文献

参考文献6

  • 1Freund Y, Schapire R E. A decision-theoretic generalization of on- line learning and an application to boosting, Journal of Computer and System Sciences, 1997 ;55 ( 1 ) : 119-139.
  • 2Schapire R E. The boosting approach to machine learning: an over- view. In: MSRI Workshop on Nonlinear Estimation and Classifica- tion, 2002.
  • 3Schwenk H, Bengio Y. Boosting neural networks. Neural Computa- tion,2000 ; 12 : 1869-1887.
  • 4Camps-vails G, Serrano-L6pez A J, Cmez-Chova L, et al. Regular- ized RBF networks for hyperspeetral data classification. Beriin/Hei- deIberg: Springer, 2004.
  • 5Valentini G, Dietterlch T G. Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods. Jour- nal of Machine Learning Research ,2004 ;5:725-775.
  • 6Li Xuehun, Wang Lei, Sung Eric. AdaBoost with SVM-hased compo- nent classifiers. Engineering Applications of Artificial Intelligence, 2008 ;21:785-795.

同被引文献36

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部