期刊文献+

基于改进的LLE和FSVM方法在人脸识别中的应用

Based on Improved LLE and FSVM Method in Face Recognition of Application
下载PDF
导出
摘要 针对人脸识别问题,提出了一种新的算法。该算法首先用gabor小波对人脸图像进行特征提取。然后采用LLE算法进行降维。最后用FSVM和三叉决策树相结合设计识别分类器进行人脸识别。在降维的过程中,针对高维空间相似性度量函数和自适应参数选取方法上,对LLE算法进行了改进。在ORL人脸数据库的仿真结果表明,该算法能有效提高人脸识别性能,具有较高识别率。 In order to improve the accuracy of face recognition, a novel algorithm is presented. First, the Ga- bor wavelet is used to extract the feature. Secondly, the low -dimensional features from the face character image da- ta was extracted by LLE algorithm with adaptive parameter estimation. In the LLE algorithm, a new function is presented to measure the proximity of objects in high dimensional spaces. At last, trained a classifier system for classification, which was designed combine the fuzzy support vector machine and the triple decision tree. The ex- perimental results on ORL face database show that the proposed algorithm performance effectively.
作者 尹方平
出处 《科学技术与工程》 北大核心 2012年第34期9390-9395,共6页 Science Technology and Engineering
基金 广东省科技厅科技计划资助项目(2011B070300118) 广东机电职业技术学院校级课题(YJ201108)资助
关键词 人脸识别 局部线性嵌入 模糊支持向量机 GABOR滤波 face recognition locally Linear Embedding (LLE) fuzzy support vector machine Gabor wavelet
  • 相关文献

参考文献14

  • 1I Turk M A. Pentland A P. Face recognition using eigenfaces. IEEE Conference on Computer Vision and Pattern Recognition. 1991: 586-591.
  • 2Bartlett M S, Sejnowski T J. Independent components of face images: a representation for face recognition. Proceedings of the Fourth Annual Joint Symposium on Nerval Computation Pasadena, CA, May17,1997.
  • 3Bartlett M S, Movellan J R, Sejnowski T 1. Face recognition by independent component analysis. Neural Networks, IEEE Transactions on.2002;13(6) :1450-1464.
  • 4Druskal J B, Wish M. Multidimensional scaling. Sage Publ ications, 1978.
  • 5Scholkopf B, Smola A. Learning with kernels: support vector machines, regularization, optimization and beyond. [S. I. J: MIT Press,2002.
  • 6Liu C. Gabor-based kernel PCA with fractional power polynomial models for face recognition. IEEE Trans Pattern Analysis and Machine Intelligence,2004;26(5) :572-581.
  • 7Liu C. Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance. IEEE Trans Pattern Analysis and Machine InteUigence, 2006; 28 (5) : 725- 737.
  • 8Tenenbaum J B, Silva V D, Langford J C. A global geometric frame- work for nonlinear dimensionality reduction. Science, 2000; 290 ( 5500 ) :2319-2323.
  • 9Roweis S T, Saul L IL Nonlinear dimensionality reduction by locally linear embedding. Science, 2000 ;290 (5500) :2323-2326.
  • 10杨风召,朱扬勇.一种有效的量化交易数据相似性搜索方法[J].计算机研究与发展,2004,41(2):361-368. 被引量:26

二级参考文献26

  • 1梁毅雄,龚卫国,潘英俊,李伟红,刘嘉敏,张红梅.基于奇异值分解的人脸识别方法[J].光学精密工程,2004,12(5):543-549. 被引量:40
  • 2李粉兰,徐可欣.一种应用于人脸正面图像的眼睛自动定位算法[J].光学精密工程,2006,14(2):320-326. 被引量:20
  • 3罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 4郑守志,叶世伟.局部线性嵌入算法改进研究[J].计算机仿真,2007,24(4):78-81. 被引量:5
  • 5A Guttman. R-Tree: A dynamic index structure for spatial searching. The ACM SIGMOD Int'l Conf on Management of Data, Boston, MA, 1984
  • 6T Sellis, N Roussopoulos, C Faloutsos. The R+ tree: A dynamic index for multidimensional objects. The 13th Int'l Conf on Very Large Data Bases, Brighton, England, 1987
  • 7N Beckman, H-P Kriegel, R Schneider et al. The R*-tree: An efficient and robust method for points and rectangles. The ACM SIGMOD Int'l Conf on Management of Data, Atlantic City, NJ, 1990
  • 8N Katayama, S Satoh. The SR-tree: An index structure for high dimensional nearest neighbor queries. The ACM SIGMOD Int'l Conf on Management of Data, Tucson, Arizona, USA, 1997
  • 9S Berchtold, D Keim, H-P Kriegel. The X-tree: An index structure for high-dimensional data. The 22nd Int'l Conf on Very Large Data Bases, Bombay, India, 1996
  • 10S Berchtold, C Bhm, H V Jagadish et al. Independent quantization: An index compression technique for high-dimensional data spaces. The 16th Int'l Conf on Data Engineering, San Diego, California, USA, 2000

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部