摘要
为了分析简单,过去通常用泊松过程来描述分组网络中的数据包到达过程,但近来的研究表明数据包到达的时间间隔并不遵循指数分布,而是遵循类似于Pareto分布的重属分布.针对Internet上的一个常用协议──TELNET协议,并依据Tcplib比提供的经验分布曲线分析了它的客户端数据包产生的时间间隔分布.分析得出,Pareto分布在很大时间范围内能较好地描述TELNET的客户端流量特性.还对它的突发序列的特性进行了分析,并分析了Pareto模型和自相似模型以及M/G/∞模型的关系,给出了Pareto分布在建立自相似网络流量模型中的应用.分析指出,在描述网络流量时自相似模型要比泊松模型有效和精确得多,可以在网络性能分析和仿真中进行应用.
Network arrivals are of ten modeled as Poisson process for analytic simplicity, but recent traffic studies have shown that data-packet interarrivals are not exponentially distributed,but a heavy-tailed distribution, including Pareto distribution. The distributlon of packet interarrivals of the TELNET originator is analyzed, according to the empirical distribution of the Tcplib, and it is shown that packet interarrivals of the TELNET originator can be well modeled by Pareto distribution in large time scales- The characteristics of the burst series and the relationship between the Pareto model and self-similar model and M/G/∞ model are analyzed. It is indicated that the self-similar model is much better than the Poisson model when trying to model the network traffic. This new model can be widely applied in network performance analysis and network performance simulation.
出处
《计算机研究与发展》
EI
CSCD
北大核心
2000年第6期746-751,共6页
Journal of Computer Research and Development